論文の概要: DYNOTEARS: Structure Learning from Time-Series Data
- arxiv url: http://arxiv.org/abs/2002.00498v2
- Date: Mon, 27 Apr 2020 18:06:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 19:46:24.521458
- Title: DYNOTEARS: Structure Learning from Time-Series Data
- Title(参考訳): DYNOTEARS:時系列データによる構造学習
- Authors: Roxana Pamfil, Nisara Sriwattanaworachai, Shaan Desai, Philip
Pilgerstorfer, Paul Beaumont, Konstantinos Georgatzis, Bryon Aragam
- Abstract要約: 時系列における変数間の同時(イントラスライス)と時間差(インタースライス)を同時に推定する手法を提案する。
動的ベイズネットワークを学習するための最先端の手法と比較して,本手法は実データに対してスケーラブルかつ正確である。
- 参考スコア(独自算出の注目度): 6.7638850283606855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We revisit the structure learning problem for dynamic Bayesian networks and
propose a method that simultaneously estimates contemporaneous (intra-slice)
and time-lagged (inter-slice) relationships between variables in a time-series.
Our approach is score-based, and revolves around minimizing a penalized loss
subject to an acyclicity constraint. To solve this problem, we leverage a
recent algebraic result characterizing the acyclicity constraint as a smooth
equality constraint. The resulting algorithm, which we call DYNOTEARS,
outperforms other methods on simulated data, especially in high-dimensions as
the number of variables increases. We also apply this algorithm on real
datasets from two different domains, finance and molecular biology, and analyze
the resulting output. Compared to state-of-the-art methods for learning dynamic
Bayesian networks, our method is both scalable and accurate on real data. The
simple formulation and competitive performance of our method make it suitable
for a variety of problems where one seeks to learn connections between
variables across time.
- Abstract(参考訳): 本稿では,動的ベイズネットワークの構造学習問題を再検討し,時系列変数間の同時性(イントラスライス)と時間遅延(相互スライス)の関係を同時に推定する手法を提案する。
我々のアプローチはスコアベースであり、非循環性制約によるペナル化損失を最小限に抑える。
この問題を解決するために、非巡回性制約を滑らかな等式制約として特徴づける最近の代数的結果を活用する。
その結果、dynotearsと呼ばれるアルゴリズムは、シミュレーションデータ、特に変数数の増加に伴う高次元データにおいて、他の手法よりも優れています。
また,このアルゴリズムを,財務学と分子生物学の2つの異なる領域の実際のデータセットに適用し,結果を分析する。
動的ベイズネットワークを学習するための最先端手法と比較すると,本手法はスケーラブルで実データに正確である。
本手法の簡易な定式化と競争性能は,変数間の関係を時間をかけて学習しようとする様々な問題に適合する。
関連論文リスト
- Switchable Decision: Dynamic Neural Generation Networks [98.61113699324429]
本稿では,各データインスタンスのリソースを動的に割り当てることで,推論を高速化するスイッチブルな決定を提案する。
提案手法は, 同一の精度を維持しながら, 推論時のコスト低減に有効である。
論文 参考訳(メタデータ) (2024-05-07T17:44:54Z) - TS-CausalNN: Learning Temporal Causal Relations from Non-linear Non-stationary Time Series Data [0.42156176975445486]
本稿では,時系列因果ニューラルネットワーク(TS-Causal Neural Network,TS-CausalNN)を提案する。
単純な並列設計に加えて、提案モデルの利点は、データの非定常性と非線形性を自然に扱うことである。
論文 参考訳(メタデータ) (2024-04-01T20:33:29Z) - Diffeomorphic Transformations for Time Series Analysis: An Efficient
Approach to Nonlinear Warping [0.0]
多くの分野にわたる時間データの拡散と普遍性は、類似性、分類、クラスタリング手法への関心を喚起した。
ユークリッドのような伝統的な距離測度は、時間に依存したデータの性質のため適していない。
この論文は、パラメトリックおよび微分同相のワープ変換を用いる新しい弾性アライメント法を提案する。
論文 参考訳(メタデータ) (2023-09-25T10:51:47Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Deep Efficient Continuous Manifold Learning for Time Series Modeling [11.876985348588477]
対称正定値行列はコンピュータビジョン、信号処理、医療画像解析において研究されている。
本稿では,リーマン多様体とコレスキー空間の間の微分同相写像を利用する枠組みを提案する。
時系列データの動的モデリングのために,多様体常微分方程式とゲートリカレントニューラルネットワークを体系的に統合した連続多様体学習法を提案する。
論文 参考訳(メタデータ) (2021-12-03T01:38:38Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - A Constraint-Based Algorithm for the Structural Learning of
Continuous-Time Bayesian Networks [70.88503833248159]
連続時間ベイズネットワークの構造を学習するための制約に基づく最初のアルゴリズムを提案する。
我々は,条件付き独立性を確立するために提案した,異なる統計的テストと基礎となる仮説について論じる。
論文 参考訳(メタデータ) (2020-07-07T07:34:09Z) - An Online Method for A Class of Distributionally Robust Optimization
with Non-Convex Objectives [54.29001037565384]
本稿では,オンライン分散ロバスト最適化(DRO)のクラスを解決するための実用的なオンライン手法を提案する。
本研究は,ネットワークの堅牢性向上のための機械学習における重要な応用を実証する。
論文 参考訳(メタデータ) (2020-06-17T20:19:25Z) - Dynamic Federated Learning [57.14673504239551]
フェデレートラーニング(Federated Learning)は、マルチエージェント環境における集中的なコーディネーション戦略の包括的用語として登場した。
我々は、各イテレーションにおいて、利用可能なエージェントのランダムなサブセットがそのデータに基づいてローカル更新を実行する、フェデレートされた学習モデルを考える。
集約最適化問題に対する真の最小化器上の非定常ランダムウォークモデルの下で、アーキテクチャの性能は、各エージェントにおけるデータ変動率、各エージェントにおけるモデル変動率、アルゴリズムの学習率に逆比例する追跡項の3つの要因によって決定されることを示す。
論文 参考訳(メタデータ) (2020-02-20T15:00:54Z) - Time Series Alignment with Global Invariances [14.632733235929926]
本稿では,時間的アライメントとともに特徴空間の潜在的大域的変換を学習することにより,特徴空間と時間的変動の両方を考慮した新しい距離を提案する。
この新たな幾何学の下で,時系列バリセンタの計算アルゴリズムを2つ提案する。
シミュレーションデータと実世界のデータの両方に対するアプローチの関心を概説し、最先端の手法と比較して、我々のアプローチの堅牢性を示す。
論文 参考訳(メタデータ) (2020-02-10T15:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。