論文の概要: A Hierarchical Transitive-Aligned Graph Kernel for Un-attributed Graphs
- arxiv url: http://arxiv.org/abs/2002.04425v1
- Date: Sat, 8 Feb 2020 11:46:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 23:04:13.933585
- Title: A Hierarchical Transitive-Aligned Graph Kernel for Un-attributed Graphs
- Title(参考訳): 非帰属グラフのための階層的推移型グラフカーネル
- Authors: Lu Bai, Lixin Cui, Edwin R. Hancock
- Abstract要約: 我々は、グラフ間の頂点を推移的に整列させることにより、新しいグラフカーネル、すなわち階層的推移型カーネルを開発する。
提案したカーネルは、分類精度の観点から、標準グラフベースのデータセット上で最先端のグラフカーネルより優れている。
- 参考スコア(独自算出の注目度): 11.51839867040302
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we develop a new graph kernel, namely the Hierarchical
Transitive-Aligned kernel, by transitively aligning the vertices between graphs
through a family of hierarchical prototype graphs. Comparing to most existing
state-of-the-art graph kernels, the proposed kernel has three theoretical
advantages. First, it incorporates the locational correspondence information
between graphs into the kernel computation, and thus overcomes the shortcoming
of ignoring structural correspondences arising in most R-convolution kernels.
Second, it guarantees the transitivity between the correspondence information
that is not available for most existing matching kernels. Third, it
incorporates the information of all graphs under comparisons into the kernel
computation process, and thus encapsulates richer characteristics. By
transductively training the C-SVM classifier, experimental evaluations
demonstrate the effectiveness of the new transitive-aligned kernel. The
proposed kernel can outperform state-of-the-art graph kernels on standard
graph-based datasets in terms of the classification accuracy.
- Abstract(参考訳): 本稿では,グラフ間の頂点を階層的プロトタイプグラフ群を通して推移的に整列させることにより,新しいグラフカーネル,すなわち階層的推移的整列カーネルを開発した。
既存の最先端グラフカーネルと比較して、提案されたカーネルには3つの理論的利点がある。
まず、グラフ間の位置対応情報をカーネル計算に組み込むことにより、ほとんどのr畳み込みカーネルで発生する構造対応を無視する欠点を克服する。
第2に、既存のほとんどのマッチングカーネルでは利用できない対応情報間の推移を保証する。
第3に、比較対象のグラフの情報をカーネル計算プロセスに組み込んで、よりリッチな特性をカプセル化する。
c-svm分類器をトランスダクティブに訓練することにより、新しいトランジッティブアライメントカーネルの有効性を実験的に評価する。
提案したカーネルは、分類精度の観点から、標準グラフベースのデータセット上で最先端のグラフカーネルより優れている。
関連論文リスト
- Deep Hierarchical Graph Alignment Kernels [16.574634620245487]
この問題を解決するために,Deep Hierarchical Graph Alignment Kernels (DHGAK)を導入する。
具体的には、関係部分構造は、その深い埋め込み空間におけるクラスタ分布に階層的に整列している。
DHGAKは正の半定値であり、再生ケルネルヒルベルト空間において線形分離性を持つ。
論文 参考訳(メタデータ) (2024-05-09T05:08:30Z) - Fine-grained Graph Rationalization [51.293401030058085]
グラフ機械学習のための微粒なグラフ合理化(FIG)を提案する。
私たちのアイデアは、入力ノード間のリッチなインタラクションを提供するセルフアテンションメカニズムによって推進されます。
実験では,実世界の7つのデータセットを対象とし,提案したFIGは,13のベースライン手法と比較して大きな性能上の優位性を示した。
論文 参考訳(メタデータ) (2023-12-13T02:56:26Z) - Structure-free Graph Condensation: From Large-scale Graphs to Condensed
Graph-free Data [91.27527985415007]
既存のグラフ凝縮法は、凝縮グラフ内のノードと構造の合同最適化に依存している。
我々は、大規模グラフを小さなグラフノード集合に蒸留する、SFGCと呼ばれる新しい構造自由グラフ凝縮パラダイムを提唱する。
論文 参考訳(メタデータ) (2023-06-05T07:53:52Z) - AERK: Aligned Entropic Reproducing Kernels through Continuous-time
Quantum Walks [17.95088104970343]
グラフ分類のためのアラインドエントロピー再生カーネル(AERK)を開発した。
ペアワイズグラフでは、提案されたAERKカーネルは、それぞれのペアの整列頂点の量子シャノンエントロピー間の再現カーネルに基づく類似性を計算することで定義される。
標準グラフデータセットに対する実験的評価は,提案したAERKカーネルがグラフ分類タスクの最先端グラフカーネルより優れていることを示す。
論文 参考訳(メタデータ) (2023-03-04T16:48:39Z) - Transductive Kernels for Gaussian Processes on Graphs [7.542220697870243]
半教師付き学習のためのノード特徴データ付きグラフ用の新しいカーネルを提案する。
カーネルは、グラフと特徴データを2つの空間として扱うことにより、正規化フレームワークから派生する。
グラフ上のカーネルベースのモデルがどれだけの頻度で設計されているかを示す。
論文 参考訳(メタデータ) (2022-11-28T14:00:50Z) - Graph Kernel Neural Networks [53.91024360329517]
本稿では、グラフ上の内部積を計算するカーネル関数であるグラフカーネルを用いて、標準畳み込み演算子をグラフ領域に拡張することを提案する。
これにより、入力グラフの埋め込みを計算する必要のない完全に構造的なモデルを定義することができる。
私たちのアーキテクチャでは,任意の種類のグラフカーネルをプラグインすることが可能です。
論文 参考訳(メタデータ) (2021-12-14T14:48:08Z) - Transport based Graph Kernels [30.541423115387097]
グラフカーネルはグラフ間の類似性を測定する強力なツールである。
既存のグラフカーネルのほとんどはノードラベルや属性に重点を置いており、グラフ階層構造情報を無視している。
最適輸送(OT)に基づくピラミッドグラフカーネルを提案する。
提案したグラフカーネルをいくつかのベンチマーク分類タスクで評価し、その性能を既存の最先端グラフカーネルと比較する。
論文 参考訳(メタデータ) (2020-11-02T04:44:27Z) - Neighborhood Preserving Kernels for Attributed Graphs [0.9176056742068812]
本稿では,属性グラフに適した再生カーネルの設計について述べる。
2つのグラフ間の類似性は、グラフノードの近傍情報に基づいて定義される。
提案したカーネルをサポートベクトルマシンに組み込むことで,実世界のデータセットを分析した。
論文 参考訳(メタデータ) (2020-10-13T09:58:50Z) - Dirichlet Graph Variational Autoencoder [65.94744123832338]
本稿では,グラフクラスタメンバシップを潜在因子とするDGVAE(Dirichlet Graph Variational Autoencoder)を提案する。
バランスグラフカットにおける低パス特性により、入力グラフをクラスタメンバシップにエンコードする、Heattsと呼ばれるGNNの新しい変種を提案する。
論文 参考訳(メタデータ) (2020-10-09T07:35:26Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
カーネル重み付けの観点からノード集約を再解釈する。
本稿では,アグリゲーション方式における特徴類似性を考慮したフレームワークを提案する。
特徴空間における特徴類似性をエンコードするために,元の隣り合うカーネルと学習可能なカーネルの合成として特徴集約を提案する。
論文 参考訳(メタデータ) (2020-05-16T04:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。