論文の概要: Fine-grained Graph Rationalization
- arxiv url: http://arxiv.org/abs/2312.07859v3
- Date: Mon, 27 Jan 2025 03:41:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:50:23.896192
- Title: Fine-grained Graph Rationalization
- Title(参考訳): 微粒グラフ合理化
- Authors: Zhe Xu, Menghai Pan, Yuzhong Chen, Huiyuan Chen, Yuchen Yan, Mahashweta Das, Hanghang Tong,
- Abstract要約: グラフ機械学習のための微粒なグラフ合理化(FIG)を提案する。
私たちのアイデアは、入力ノード間のリッチなインタラクションを提供するセルフアテンションメカニズムによって推進されます。
実験では,実世界の7つのデータセットを対象とし,提案したFIGは,13のベースライン手法と比較して大きな性能上の優位性を示した。
- 参考スコア(独自算出の注目度): 51.293401030058085
- License:
- Abstract: Rationale discovery is defined as finding a subset of the input data that maximally supports the prediction of downstream tasks. In the context of graph machine learning, graph rationale is defined to locate the critical subgraph in the given graph topology. In contrast to the rationale subgraph, the remaining subgraph is named the environment subgraph. Graph rationalization can enhance the model performance as the mapping between the graph rationale and prediction label is viewed as invariant, by assumption. To ensure the discriminative power of the extracted rationale subgraphs, a key technique named "intervention" is applied whose heart is that given changing environment subgraphs, the semantics from the rationale subgraph is invariant, guaranteeing the correct prediction result. However, most, if not all, of the existing graph rationalization methods develop their intervention strategies on the graph level, which is coarse-grained. In this paper, we propose fine-grained graph rationalization (FIG). Our idea is driven by the self-attention mechanism, which provides rich interactions between input nodes. Based on that, FIG can achieve node-level and virtual node-level intervention. Our experiments involve 7 real-world datasets, and the proposed FIG shows significant performance advantages compared to 13 baseline methods.
- Abstract(参考訳): Rationale discovery は、下流タスクの予測を最大限にサポートする入力データのサブセットを見つけるものとして定義される。
グラフ機械学習の文脈では、グラフ論理は与えられたグラフトポロジーにおける臨界部分グラフを見つけるために定義される。
有理部分グラフとは対照的に、残りの部分グラフは環境部分グラフと呼ばれる。
グラフの合理化は、グラフの合理化と予測ラベルのマッピングが仮定によって不変であると見なされるため、モデルの性能を向上させることができる。
抽出された有理部分グラフの識別力を確保するため、変化環境部分グラフが与えられた場合、有理部分グラフからの意味論は不変であり、正しい予測結果が保証される「介入」と呼ばれる重要な技法が適用される。
しかし、すべてではないにしても、既存のグラフ合理化手法のほとんどが、粗い粒度のグラフレベルでの介入戦略を発展させている。
本稿では,細粒度グラフ合理化(FIG)を提案する。
私たちのアイデアは、入力ノード間のリッチなインタラクションを提供するセルフアテンションメカニズムによって推進されます。
これに基づいて、FIGはノードレベルと仮想ノードレベルの介入を達成できる。
実験では,実世界の7つのデータセットを対象とし,提案したFIGは,13のベースライン手法と比較して大きな性能上の優位性を示した。
関連論文リスト
- Graph Counterfactual Explainable AI via Latent Space Traversal [4.337339380445765]
反実的な説明は、分配の代替入力の「アレスト」を見つけることによって予測を説明することを目的としている。
本稿では, 識別可能なブラックボックスグラフ分類器に対して, 反実的説明を生成する手法を提案する。
我々は3つのグラフデータセットに対するアプローチを実証的に検証し、我々のモデルはベースラインよりも一貫してハイパフォーマンスで堅牢であることを示した。
論文 参考訳(メタデータ) (2025-01-15T15:04:10Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Principle of Relevant Information for Graph Sparsification [27.54740921723433]
グラフスペーシフィケーションは、グラフの構造的特性を維持しながら、グラフのエッジ数を減らすことを目的としている。
我々は、関係情報原理(PRI)から着想を得て、グラフスカラー化の汎用的で効果的な情報理論の定式化を提案する。
本稿では,グラフスペーシフィケーション,グラフ正規化マルチタスク学習,医用画像由来の脳ネットワーク分類の3つの応用例を示す。
論文 参考訳(メタデータ) (2022-05-31T21:00:42Z) - Graph-wise Common Latent Factor Extraction for Unsupervised Graph
Representation Learning [40.70562886682939]
我々は、教師なしグラフ表現学習のための新しい原則を提案する:グラフワイド共通潜在因子抽出(GCFX)
GCFXは入力グラフから一般的な潜伏因子を明示的に抽出し、現在の最先端のタスクで改善された結果を達成する。
広範囲な実験と分析により,GCFXは個々のノードや周辺地域の局所的な変動による障害を軽減するため,グラフレベルのタスクに有用であることを示す。
論文 参考訳(メタデータ) (2021-12-16T12:22:49Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
指数乱グラフ(ERG)の分野における重要な課題は、大きなグラフ上の非自明なERGの適合である。
本稿では,非自明なERGに対する近似フレームワークを提案する。
我々の手法は、数百万のノードからなるスパースグラフにスケーラブルである。
論文 参考訳(メタデータ) (2020-02-14T11:42:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。