論文の概要: Adversarial Robustness for Code
- arxiv url: http://arxiv.org/abs/2002.04694v2
- Date: Sat, 15 Aug 2020 12:35:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-02 02:05:30.143379
- Title: Adversarial Robustness for Code
- Title(参考訳): コードの逆ロバスト性
- Authors: Pavol Bielik and Martin Vechev
- Abstract要約: 他のドメインと同様に、コードのニューラルモデルは敵の攻撃に対して脆弱であることを示す。
既存の技術と新しい技術を組み合わせて、高い精度を維持しながらロバスト性を向上させる。
- 参考スコア(独自算出の注目度): 7.81768535871051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning and deep learning in particular has been recently used to
successfully address many tasks in the domain of code such as finding and
fixing bugs, code completion, decompilation, type inference and many others.
However, the issue of adversarial robustness of models for code has gone
largely unnoticed. In this work, we explore this issue by: (i) instantiating
adversarial attacks for code (a domain with discrete and highly structured
inputs), (ii) showing that, similar to other domains, neural models for code
are vulnerable to adversarial attacks, and (iii) combining existing and novel
techniques to improve robustness while preserving high accuracy.
- Abstract(参考訳): 特に機械学習とディープラーニングは、バグの発見や修正、コード補完、デコンパイル、型推論など、コードの領域における多くのタスクにうまく対処するために最近使用されている。
しかし、コードに対するモデルの敵意的な堅牢性の問題はほとんど気付かれていない。
本研究では,この問題を次のように探求する。
一 コード(離散かつ高度に構造化された入力を有する領域)に対する敵攻撃のインスタンス化
(ii)他のドメインと同様、コードに対する神経モデルが敵の攻撃に対して脆弱であることを示し、
(iii)高精度を維持しつつロバスト性を向上させるための既存技術と新規技術を組み合わせること。
関連論文リスト
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
ディープニューラルネットワーク(DNN)は、わずかに敵対的な摂動に対して脆弱である。
トレーニング中の強力な特徴表現学習は、元のモデルの堅牢性を大幅に向上させることができることを示す。
本稿では,多目的特徴表現学習手法であるMORELを提案する。
論文 参考訳(メタデータ) (2024-10-02T16:05:03Z) - Assessing Cybersecurity Vulnerabilities in Code Large Language Models [18.720986922660543]
EvilInstructCoderは、命令チューニングされたコードLLMのサイバーセキュリティ脆弱性を敵の攻撃に対して評価するように設計されたフレームワークである。
実際の脅威モデルを組み込んで、さまざまな能力を持つ現実世界の敵を反映している。
我々は、3つの最先端のCode LLMモデルを用いて、コーディングタスクのための命令チューニングの活用性について包括的に調査する。
論文 参考訳(メタデータ) (2024-04-29T10:14:58Z) - CONCORD: Clone-aware Contrastive Learning for Source Code [64.51161487524436]
セルフ教師付き事前トレーニングは、多くのダウンストリームSEタスクに価値のあるジェネリックコード表現を学ぶための牽引役になった。
汎用的な表現学習のために、開発者が日々どのようにコードをコーディングするかは、要因としても不可欠である、と私たちは主張する。
特に,表現空間に良性クローンを近づける自己教師型コントラスト学習戦略であるCONCORDを提案する。
論文 参考訳(メタデータ) (2023-06-05T20:39:08Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - Language-Driven Anchors for Zero-Shot Adversarial Robustness [25.160195547250655]
本稿では,言語駆動型アンカー型対外訓練戦略を提案する。
テキストエンコーダのセマンティック一貫性を活用することで、LAATは画像モデルの対角的堅牢性を高めることを目指している。
LAATは、最先端手法よりもゼロショット対逆ロバスト性を著しく向上することを示す。
論文 参考訳(メタデータ) (2023-01-30T17:34:43Z) - Enhancing Semantic Code Search with Multimodal Contrastive Learning and
Soft Data Augmentation [50.14232079160476]
コード検索のためのマルチモーダルコントラスト学習とソフトデータ拡張を用いた新しい手法を提案する。
我々は,6つのプログラミング言語を用いた大規模データセットにおけるアプローチの有効性を評価するために,広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-07T08:49:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - Multi-context Attention Fusion Neural Network for Software Vulnerability
Identification [4.05739885420409]
ソースコードのセキュリティ脆弱性の共通カテゴリのいくつかを効率的に検出することを学ぶディープラーニングモデルを提案する。
モデルは、学習可能なパラメータの少ないコードセマンティクスの正確な理解を構築します。
提案したAIは、ベンチマークされたNIST SARDデータセットから特定のCWEに対して98.40%のF1スコアを達成する。
論文 参考訳(メタデータ) (2021-04-19T11:50:36Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Semantic Robustness of Models of Source Code [44.08472936613909]
深層ニューラルネットワークは敵の例に弱い - 誤った予測をもたらす小さな入力摂動だ。
このような敵に頑健なモデルを学習するために、敵の訓練を行う方法を示す。
論文 参考訳(メタデータ) (2020-02-07T23:26:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。