論文の概要: ConvLab-2: An Open-Source Toolkit for Building, Evaluating, and
Diagnosing Dialogue Systems
- arxiv url: http://arxiv.org/abs/2002.04793v2
- Date: Wed, 29 Apr 2020 14:02:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 19:03:17.697790
- Title: ConvLab-2: An Open-Source Toolkit for Building, Evaluating, and
Diagnosing Dialogue Systems
- Title(参考訳): convlab-2:対話システムの構築、評価、診断のためのオープンソースツールキット
- Authors: Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi Takanobu, Jinchao Li,
Baolin Peng, Jianfeng Gao, Xiaoyan Zhu, Minlie Huang
- Abstract要約: ConvLab-2は、研究者が最先端のモデルでタスク指向の対話システムを構築することができるオープンソースのツールキットである。
分析ツールは、豊富な統計情報を示し、シミュレーションされた対話から一般的な誤りを要約する。
このインタラクティブツールは、システムと対話し、各システムコンポーネントの出力を変更することで、統合された対話システムの診断を可能にする。
- 参考スコア(独自算出の注目度): 107.35174238206525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present ConvLab-2, an open-source toolkit that enables researchers to
build task-oriented dialogue systems with state-of-the-art models, perform an
end-to-end evaluation, and diagnose the weakness of systems. As the successor
of ConvLab (Lee et al., 2019b), ConvLab-2 inherits ConvLab's framework but
integrates more powerful dialogue models and supports more datasets. Besides,
we have developed an analysis tool and an interactive tool to assist
researchers in diagnosing dialogue systems. The analysis tool presents rich
statistics and summarizes common mistakes from simulated dialogues, which
facilitates error analysis and system improvement. The interactive tool
provides a user interface that allows developers to diagnose an assembled
dialogue system by interacting with the system and modifying the output of each
system component.
- Abstract(参考訳): 本研究では,最先端モデルを用いたタスク指向対話システムの構築,エンドツーエンド評価,システムの弱点の診断を可能にするオープンソースツールキットConvLab-2を提案する。
ConvLab (Lee et al., 2019b)の後継として、ConvLab-2はConvLabのフレームワークを継承するが、より強力な対話モデルを統合し、より多くのデータセットをサポートする。
さらに,研究者の対話システム診断を支援する解析ツールと対話ツールを開発した。
分析ツールは、豊富な統計データを提示し、シミュレーションされた対話から一般的な誤りを要約する。
このインタラクティブツールは、システムと対話し、各システムコンポーネントの出力を変更することで、組み立てられた対話システムの診断を可能にするユーザインターフェースを提供する。
関連論文リスト
- Are cascade dialogue state tracking models speaking out of turn in
spoken dialogues? [1.786898113631979]
本稿では,対話状態追跡のような複雑な環境下でのアートシステムのエラーを包括的に解析する。
音声MultiWozに基づいて、音声対話システムとチャットベースの対話システムとのギャップを埋めるためには、非カテゴリースロットの値の誤差に対処することが不可欠である。
論文 参考訳(メタデータ) (2023-11-03T08:45:22Z) - ConvLab-3: A Flexible Dialogue System Toolkit Based on a Unified Data
Format [88.33443450434521]
タスク指向対話(TOD)システムはデジタルアシスタントとして機能し、フライトの予約やレストランの検索といった様々なタスクを通じてユーザを誘導する。
TODシステムを構築するための既存のツールキットは、データ、モデル、実験環境の包括的な配列を提供するのに不足することが多い。
本稿では,このギャップを埋めるための多面的対話システムツールキットConvLab-3を紹介する。
論文 参考訳(メタデータ) (2022-11-30T16:37:42Z) - CGoDial: A Large-Scale Benchmark for Chinese Goal-oriented Dialog
Evaluation [75.60156479374416]
CGoDialは、Goal指向のダイアログ評価のための、新しい挑戦的で包括的な中国のベンチマークである。
96,763のダイアログセッションと574,949のダイアログがすべて含まれており、異なる知識ソースを持つ3つのデータセットをカバーする。
学術ベンチマークと音声対話のシナリオのギャップを埋めるために、実際の会話からデータを収集したり、クラウドソーシングを通じて既存のデータセットに音声機能を追加する。
論文 参考訳(メタデータ) (2022-11-21T16:21:41Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - Actionable Conversational Quality Indicators for Improving Task-Oriented
Dialog Systems [2.6094079735487994]
本稿では、ACQI(Actionable Conversational Quality Indicator)の使用について紹介し、解説する。
ACQIは、改善可能なダイアログの一部を認識し、改善する方法を推奨するために使用される。
本稿では、商用顧客サービスアプリケーションで使用されるLivePersonの内部ダイアログシステムにおけるACQIの使用の有効性を示す。
論文 参考訳(メタデータ) (2021-09-22T22:41:42Z) - Transferable Dialogue Systems and User Simulators [17.106518400787156]
対話システムのトレーニングの難しさの1つは、トレーニングデータの欠如である。
本稿では,対話システムとユーザシミュレータ間の対話を通して対話データを作成する可能性について検討する。
我々は,2つのエージェント間のセルフプレイを通じて,新たな対話シナリオを組み込むことのできるモデリングフレームワークを開発する。
論文 参考訳(メタデータ) (2021-07-25T22:59:09Z) - Is Your Goal-Oriented Dialog Model Performing Really Well? Empirical
Analysis of System-wise Evaluation [114.48767388174218]
本稿では,異なる設定の異なるモジュールから構成される異なるダイアログシステムについて,実験的検討を行った。
この結果から, 粗粒度ラベルで学習した連系や終端モデルを用いたシステムよりも, 細粒度監視信号を用いて訓練したパイプラインダイアログシステムの方が, 高い性能が得られることが示唆された。
論文 参考訳(メタデータ) (2020-05-15T05:20:06Z) - Conversation Learner -- A Machine Teaching Tool for Building Dialog
Managers for Task-Oriented Dialog Systems [57.082447660944965]
Conversation Learnerは、ダイアログマネージャを構築するための機械学習ツールである。
ダイアログ作成者が慣れ親しんだツールを使ってダイアログフローを作成し、ダイアログフローをパラメトリックモデルに変換することができる。
ユーザシステムダイアログをトレーニングデータとして活用することで、ダイアログ作成者が時間とともにダイアログマネージャを改善することができる。
論文 参考訳(メタデータ) (2020-04-09T00:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。