論文の概要: Approximate MMAP by Marginal Search
- arxiv url: http://arxiv.org/abs/2002.04827v1
- Date: Wed, 12 Feb 2020 07:41:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 20:04:08.751758
- Title: Approximate MMAP by Marginal Search
- Title(参考訳): Marginal Searchによる近似MMAP
- Authors: Alessandro Antonucci and Thomas Tiotto
- Abstract要約: 本稿では,グラフィカルモデルにおける最小値MAPクエリの戦略を提案する。
提案した信頼度尺度は,アルゴリズムが正確であるインスタンスを適切に検出するものである。
十分に高い信頼度を得るために、アルゴリズムは正確な解を与えるか、正確な解からハミング距離が小さい近似を与える。
- 参考スコア(独自算出の注目度): 78.50747042819503
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a heuristic strategy for marginal MAP (MMAP) queries in graphical
models. The algorithm is based on a reduction of the task to a polynomial
number of marginal inference computations. Given an input evidence, the
marginals mass functions of the variables to be explained are computed.
Marginal information gain is used to decide the variables to be explained
first, and their most probable marginal states are consequently moved to the
evidence. The sequential iteration of this procedure leads to a MMAP
explanation and the minimum information gain obtained during the process can be
regarded as a confidence measure for the explanation. Preliminary experiments
show that the proposed confidence measure is properly detecting instances for
which the algorithm is accurate and, for sufficiently high confidence levels,
the algorithm gives the exact solution or an approximation whose Hamming
distance from the exact one is small.
- Abstract(参考訳): 本稿では,グラフモデルにおけるマージンマップ(mmap)クエリのヒューリスティック戦略を提案する。
このアルゴリズムは、タスクを余剰推論計算の多項式数に還元することに基づいている。
入力証拠が与えられた場合、説明すべき変数の限界質量関数が計算される。
マージナル情報ゲイン(Marginal information gain)は、まず説明すべき変数を決定するために使用され、その結果、最も可能性の高い境界状態が証拠に移される。
この手順の逐次反復は、MMAP説明につながり、プロセス中に得られた最小情報ゲインは、その説明に対する信頼度尺度とみなすことができる。
予備実験により,提案手法は,アルゴリズムが正確であるインスタンスを適切に検出し,十分な信頼性レベルにおいて,アルゴリズムが正確な解,あるいは正確な解からのハミング距離が小さい近似を与えることを示す。
関連論文リスト
- Probabilistic Inference in Reinforcement Learning Done Right [37.31057328219418]
強化学習における一般的な見解は、マルコフ決定過程(MDP)のグラフィカルモデルに確率論的推論として問題を提起している。
この量を近似するための従来のアプローチは任意に貧弱であり、真の統計的推論を実装しないアルゴリズムに繋がる。
我々はまず、この量が、後悔によって測定されるように、効率的に探索するポリシーを生成するために実際に利用できることを明らかにした。
論文 参考訳(メタデータ) (2023-11-22T10:23:14Z) - Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - Parallel Stochastic Mirror Descent for MDPs [72.75921150912556]
無限水平マルコフ決定過程(MDP)における最適政策学習の問題を考える。
リプシッツ連続関数を用いた凸プログラミング問題に対してミラー・ディクセントの変種が提案されている。
このアルゴリズムを一般の場合において解析し,提案手法の動作中に誤差を蓄積しない収束率の推定値を得る。
論文 参考訳(メタデータ) (2021-02-27T19:28:39Z) - Non-approximate Inference for Collective Graphical Models on Path Graphs
via Discrete Difference of Convex Algorithm [19.987509826212115]
本稿では,パスグラフ上の集合的グラフィカルモデル(CGM)に対するMAP推論の新しい手法を提案する。
まず、MAP推論問題を(非線形)最小コストフロー問題として定式化できることを示す。
提案手法では,dcaの重要なサブルーチンを最小凸コストフローアルゴリズムにより効率的に計算できる。
論文 参考訳(メタデータ) (2021-02-18T07:28:18Z) - Optimal quantisation of probability measures using maximum mean
discrepancy [10.29438865750845]
何人かの研究者は、確率測度を定量化する方法として、最大平均誤差 (MMD) の最小化を提案している。
離散的候補集合よりもMDDを優しく最小化する逐次アルゴリズムを考える。
本手法を各反復時の候補集合のミニバッチに適用する変種について検討する。
論文 参考訳(メタデータ) (2020-10-14T13:09:48Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Revisiting Co-Occurring Directions: Sharper Analysis and Efficient
Algorithm for Sparse Matrices [23.22254890452548]
近似行列乗算(AMM)のストリーミングモデルについて検討する。
我々は、アルゴリズムが限られたメモリでデータを1回だけ渡すことができるというシナリオに興味を持っている。
AMMストリーミングのための最先端決定論的スケッチアルゴリズムは共起方向(COD)である
論文 参考訳(メタデータ) (2020-09-05T15:35:59Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - A Robust Functional EM Algorithm for Incomplete Panel Count Data [66.07942227228014]
完全無作為な仮定(MCAR)の下での数え上げ過程の平均関数を推定する機能的EMアルゴリズムを提案する。
提案アルゴリズムは、いくつかの一般的なパネル数推定手法をラップし、不完全数にシームレスに対処し、ポアソン過程の仮定の誤特定に頑健である。
本稿では, 数値実験による提案アルゴリズムの有用性と喫煙停止データの解析について述べる。
論文 参考訳(メタデータ) (2020-03-02T20:04:38Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
本稿では、同時局所化およびマッピング(SLAM)におけるマップ間ループ閉包外乱検出のための、新しい分散手法を提案する。
提案アルゴリズムは優れた初期化に頼らず、一度に2つ以上のマップを処理できる。
論文 参考訳(メタデータ) (2020-02-07T06:34:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。