Full-Cycle Energy Consumption Benchmark for Low-Carbon Computer Vision
- URL: http://arxiv.org/abs/2108.13465v1
- Date: Mon, 30 Aug 2021 18:22:36 GMT
- Title: Full-Cycle Energy Consumption Benchmark for Low-Carbon Computer Vision
- Authors: Bo Li, Xinyang Jiang, Donglin Bai, Yuge Zhang, Ningxin Zheng, Xuanyi
Dong, Lu Liu, Yuqing Yang, Dongsheng Li
- Abstract summary: We present the first large-scale energy consumption benchmark for efficient computer vision models.
A new metric is proposed to explicitly evaluate the full-cycle energy consumption under different model usage intensity.
- Score: 31.781943982148025
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The energy consumption of deep learning models is increasing at a
breathtaking rate, which raises concerns due to potential negative effects on
carbon neutrality in the context of global warming and climate change. With the
progress of efficient deep learning techniques, e.g., model compression,
researchers can obtain efficient models with fewer parameters and smaller
latency. However, most of the existing efficient deep learning methods do not
explicitly consider energy consumption as a key performance indicator.
Furthermore, existing methods mostly focus on the inference costs of the
resulting efficient models, but neglect the notable energy consumption
throughout the entire life cycle of the algorithm. In this paper, we present
the first large-scale energy consumption benchmark for efficient computer
vision models, where a new metric is proposed to explicitly evaluate the
full-cycle energy consumption under different model usage intensity. The
benchmark can provide insights for low carbon emission when selecting efficient
deep learning algorithms in different model usage scenarios.
Related papers
- Impact of ML Optimization Tactics on Greener Pre-Trained ML Models [46.78148962732881]
This study aims to (i) analyze image classification datasets and pre-trained models, (ii) improve inference efficiency by comparing optimized and non-optimized models, and (iii) assess the economic impact of the optimizations.
We conduct a controlled experiment to evaluate the impact of various PyTorch optimization techniques (dynamic quantization, torch.compile, local pruning, and global pruning) to 42 Hugging Face models for image classification.
Dynamic quantization demonstrates significant reductions in inference time and energy consumption, making it highly suitable for large-scale systems.
arXiv Detail & Related papers (2024-09-19T16:23:03Z) - Evaluating the Energy Efficiency of Few-Shot Learning for Object
Detection in Industrial Settings [6.611985866622974]
This paper presents a finetuning approach to adapt standard object detection models to downstream tasks.
Case study and evaluation of the energy demands of the developed models are presented.
Finally, this paper introduces a novel way to quantify this trade-off through a customized Efficiency Factor metric.
arXiv Detail & Related papers (2024-03-11T11:41:30Z) - A Carbon Tracking Model for Federated Learning: Impact of Quantization and Sparsification [5.341266334051207]
Federated Learning (FL) methods adopt efficient communication technologies to distribute machine learning tasks across edge devices.
This paper proposes a framework for real-time monitoring of the energy and carbon footprint impacts of FL systems.
arXiv Detail & Related papers (2023-10-12T07:20:03Z) - Watt For What: Rethinking Deep Learning's Energy-Performance Relationship [13.505163099299025]
We study the trade-off between model accuracy and electricity consumption of deep learning models.
By evaluating accuracy per unit of electricity consumed, we demonstrate how smaller, more energy-efficient models can significantly expedite research.
This research contributes to a more equitable research landscape, where smaller entities can compete effectively with larger counterparts.
arXiv Detail & Related papers (2023-10-10T11:08:31Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Sustainable AIGC Workload Scheduling of Geo-Distributed Data Centers: A
Multi-Agent Reinforcement Learning Approach [48.18355658448509]
Recent breakthroughs in generative artificial intelligence have triggered a surge in demand for machine learning training, which poses significant cost burdens and environmental challenges due to its substantial energy consumption.
Scheduling training jobs among geographically distributed cloud data centers unveils the opportunity to optimize the usage of computing capacity powered by inexpensive and low-carbon energy.
We propose an algorithm based on multi-agent reinforcement learning and actor-critic methods to learn the optimal collaborative scheduling strategy through interacting with a cloud system built with real-life workload patterns, energy prices, and carbon intensities.
arXiv Detail & Related papers (2023-04-17T02:12:30Z) - Uncovering Energy-Efficient Practices in Deep Learning Training:
Preliminary Steps Towards Green AI [8.025202812165412]
We consider energy consumption as a metric of equal importance to accuracy and to reduce any irrelevant tasks or energy usage.
We examine the training stage of the deep learning pipeline from a sustainability perspective.
We highlight innovative and promising energy-efficient practices for training deep learning models.
arXiv Detail & Related papers (2023-03-24T12:48:21Z) - Precise Energy Consumption Measurements of Heterogeneous Artificial
Intelligence Workloads [0.534434568021034]
We present measurements of the energy consumption of two typical applications of deep learning models on different types of compute nodes.
One advantage of our approach is that the information on energy consumption is available to all users of the supercomputer.
arXiv Detail & Related papers (2022-12-03T21:40:55Z) - HULK: An Energy Efficiency Benchmark Platform for Responsible Natural
Language Processing [76.38975568873765]
We introduce HULK, a multi-task energy efficiency benchmarking platform for responsible natural language processing.
We compare pretrained models' energy efficiency from the perspectives of time and cost.
arXiv Detail & Related papers (2020-02-14T01:04:19Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
We introduce a framework for tracking realtime energy consumption and carbon emissions.
We create a leaderboard for energy efficient reinforcement learning algorithms.
We propose strategies for mitigation of carbon emissions and reduction of energy consumption.
arXiv Detail & Related papers (2020-01-31T05:12:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.