論文の概要: Gender Genetic Algorithm in the Dynamic Optimization Problem
- arxiv url: http://arxiv.org/abs/2002.05882v1
- Date: Fri, 14 Feb 2020 06:06:38 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 04:23:37.431288
- Title: Gender Genetic Algorithm in the Dynamic Optimization Problem
- Title(参考訳): 動的最適化問題におけるジェンダー遺伝的アルゴリズム
- Authors: P.A. Golovinski, S.A. Kolodyazhnyi
- Abstract要約: ジェンダー遺伝的アルゴリズムを用いた高速プロセスの最適化のための一般的なアプローチについて述べる。
従来の遺伝的アルゴリズムとの違いは、人工個体群を2つの性に分けることである。
ボルドウィン効果を用いたジェンダー遺伝アルゴリズムの有望な応用として、消火のダイナミクスが指摘されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A general approach to optimizing fast processes using a gender genetic
algorithm is described. Its difference from the more traditional genetic
algorithm it contains division the artificial population into two sexes. Male
subpopulations undergo large mutations and more strong selection compared to
female individuals from another subset. This separation allows combining the
rapid adaptability of the entire population to changes due to the variation of
the male subpopulation with fixation of adaptability in the female part. The
advantage of the effect of additional individual learning in the form of
Boldwin effect in finding optimal solutions is observed in comparison with the
usual gender genetic algorithm. As a promising application of the gender
genetic algorithm with the Boldwin effect, the dynamics of extinguishing
natural fires is pointed.
- Abstract(参考訳): ジェンダー遺伝的アルゴリズムを用いた高速プロセスの最適化手法について述べる。
従来の遺伝的アルゴリズムとの違いは、人工個体群を2つの性に分けることである。
雄の亜集団は、他の部分集合の雌よりも大きな突然変異とより強い選択を受ける。
この分離により、オスの亜集団の変動と雌部の適応性の固定によって、集団全体の急速な適応性を変化に結びつけることができる。
最適解の探索におけるボルドウィン効果の形での追加的な個別学習の効果の利点は、通常の性別遺伝アルゴリズムと比較して観察される。
ボルドウィン効果を持つ遺伝的アルゴリズムの有望な応用として,自然火災の消火のダイナミクスを指摘した。
関連論文リスト
- Predicting Genetic Mutation from Whole Slide Images via Biomedical-Linguistic Knowledge Enhanced Multi-label Classification [119.13058298388101]
遺伝子変異予測性能を向上させるため,生物知識を付加したPathGenomic Multi-label Transformerを開発した。
BPGTはまず、2つの慎重に設計されたモジュールによって遺伝子前駆体を構成する新しい遺伝子エンコーダを確立する。
BPGTはその後ラベルデコーダを設計し、最終的に2つの調整されたモジュールによる遺伝的突然変異予測を行う。
論文 参考訳(メタデータ) (2024-06-05T06:42:27Z) - Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
本稿では,問題の近似クラスに依存する遺伝的アルゴリズムの有用性を解析する。
特に, 遺伝的アルゴリズムは階層の最も悲観的なクラスに特に有用であることを示す。
論文 参考訳(メタデータ) (2024-02-01T09:18:34Z) - Genetic Algorithm enhanced by Deep Reinforcement Learning in parent
selection mechanism and mutation : Minimizing makespan in permutation flow
shop scheduling problems [0.18846515534317265]
RL+GA法はフローショップスケジューリング問題(FSP)で特に検証された。
このハイブリッドアルゴリズムはニューラルネットワーク(NN)を導入し、Qラーニング(Q-learning)というオフ政治手法を使用する。
本研究は, プリミティブGAの性能向上におけるRL+GAアプローチの有効性を明らかにするものである。
論文 参考訳(メタデータ) (2023-11-10T08:51:42Z) - Larger Offspring Populations Help the $(1 + (\lambda, \lambda))$ Genetic
Algorithm to Overcome the Noise [76.24156145566425]
進化的アルゴリズムは、適合性の評価においてノイズに対して堅牢であることが知られている。
我々は$(lambda,lambda)$の遺伝的アルゴリズムがどんなにノイズに強いかを解析する。
論文 参考訳(メタデータ) (2023-05-08T08:49:01Z) - Massively Parallel Genetic Optimization through Asynchronous Propagation
of Populations [50.591267188664666]
Propulateは、グローバル最適化のための進化的最適化アルゴリズムとソフトウェアパッケージである。
提案アルゴリズムは, 選択, 突然変異, 交叉, 移動の変種を特徴とする。
Propulateは解の精度を犠牲にすることなく、最大で3桁高速であることがわかった。
論文 参考訳(メタデータ) (2023-01-20T18:17:34Z) - A Genetic Quantum Annealing Algorithm [0.0]
遺伝的アルゴリズム(英: genetic algorithm, GA)は、遺伝的・自然選択の原理に基づく探索に基づく最適化手法である。
本稿では,量子アニールからの入力により古典的GAを向上するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-15T16:59:55Z) - Temporal Heterogeneity Improves Speed and Convergence in Genetic
Algorithms [0.0]
遺伝的アルゴリズムは自然選択をシミュレートし、様々な問題の解を探すためにパラメータ空間を探索する。
我々は、クロスオーバー確率を個人のフィットネスに逆比例するように設定した。
時間的不均一性はパラメータ空間の事前の知識を必要とせずに探索を改善する。
論文 参考訳(メタデータ) (2022-02-02T22:48:56Z) - Result Diversification by Multi-objective Evolutionary Algorithms with
Theoretical Guarantees [94.72461292387146]
両目的探索問題として結果の多様化問題を再構成し,多目的進化アルゴリズム(EA)を用いて解くことを提案する。
GSEMOが最適時間近似比1/2$を達成できることを理論的に証明する。
目的関数が動的に変化すると、GSEMOはこの近似比をランニングタイムで維持することができ、Borodinらによって提案されたオープンな問題に対処する。
論文 参考訳(メタデータ) (2021-10-18T14:00:22Z) - Understanding the Generalization of Adam in Learning Neural Networks
with Proper Regularization [118.50301177912381]
我々は,重力減衰グローバリゼーションにおいても,目的の異なる解に確実に異なる誤差で収束できることを示す。
凸と重み減衰正則化を用いると、Adamを含む任意の最適化アルゴリズムは同じ解に収束することを示す。
論文 参考訳(メタデータ) (2021-08-25T17:58:21Z) - A Rank based Adaptive Mutation in Genetic Algorithm [0.0]
本稿では,染色体ランクを用いた突然変異確率生成の代替手法を提案する。
単純な遺伝的アルゴリズム(SGA)と一定の突然変異確率と限られた資源制約内での適応的アプローチとの比較実験を行った。
論文 参考訳(メタデータ) (2021-04-18T12:41:33Z) - Genetic optimization algorithms applied toward mission computability
models [0.3655021726150368]
遺伝的アルゴリズムは計算ベースであり、計算に低コストである。
遺伝的最適化アルゴリズムをミッションクリティカルかつ制約対応の問題に記述する。
論文 参考訳(メタデータ) (2020-05-27T00:45:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。