論文の概要: Genetic optimization algorithms applied toward mission computability
models
- arxiv url: http://arxiv.org/abs/2005.13105v1
- Date: Wed, 27 May 2020 00:45:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-28 09:07:15.742326
- Title: Genetic optimization algorithms applied toward mission computability
models
- Title(参考訳): ミッション計算可能性モデルへの遺伝的最適化アルゴリズムの適用
- Authors: Mee Seong Im, Venkat R. Dasari
- Abstract要約: 遺伝的アルゴリズムは計算ベースであり、計算に低コストである。
遺伝的最適化アルゴリズムをミッションクリティカルかつ制約対応の問題に記述する。
- 参考スコア(独自算出の注目度): 0.3655021726150368
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Genetic algorithms are modeled after the biological evolutionary processes
that use natural selection to select the best species to survive. They are
heuristics based and low cost to compute. Genetic algorithms use selection,
crossover, and mutation to obtain a feasible solution to computational
problems. In this paper, we describe our genetic optimization algorithms to a
mission-critical and constraints-aware computation problem.
- Abstract(参考訳): 遺伝的アルゴリズムは、自然選択を用いて生き残る最良の種を選択する生物学的進化過程をモデル化する。
ヒューリスティックベースであり、計算コストが低い。
遺伝的アルゴリズムは選択、交叉、突然変異を用いて計算問題に対する実現可能な解を求める。
本稿では,遺伝的最適化アルゴリズムをミッションクリティカルかつ制約対応の計算問題に適用する。
関連論文リスト
- Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
本稿では,問題の近似クラスに依存する遺伝的アルゴリズムの有用性を解析する。
特に, 遺伝的アルゴリズムは階層の最も悲観的なクラスに特に有用であることを示す。
論文 参考訳(メタデータ) (2024-02-01T09:18:34Z) - Benchmarking Differential Evolution on a Quantum Simulator [0.0]
微分進化(DE)はラストリギン関数やローゼンブロック関数などの関数の最小値を計算するために用いられる。
この研究は、古典的チューリングモデル計算で生成される候補個体を用いて、これらの関数にDE法を適用した結果の研究である。
論文 参考訳(メタデータ) (2023-11-06T14:27:00Z) - Genetic Engineering Algorithm (GEA): An Efficient Metaheuristic
Algorithm for Solving Combinatorial Optimization Problems [1.8434042562191815]
遺伝的アルゴリズム(GA)は最適化問題の解法における効率性で知られている。
本稿では遺伝子工学の概念からインスピレーションを得るため,遺伝子工学アルゴリズム(GEA)と呼ばれる新しいメタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-28T13:05:30Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Discovering Attention-Based Genetic Algorithms via Meta-Black-Box
Optimization [13.131971623143622]
全く新しい遺伝的アルゴリズムをデータ駆動方式で発見する。
我々は、選択と突然変異率の適応をクロスアテンションモジュールおよびセルフアテンションモジュールとしてパラメトリズする。
学習アルゴリズムは、未確認の最適化問題、探索次元、評価予算に適用できる。
論文 参考訳(メタデータ) (2023-04-08T12:14:15Z) - Applications of Gaussian Mutation for Self Adaptation in Evolutionary
Genetic Algorithms [0.0]
1960年、ジョン・H・ホランドとその学生によって最初の遺伝的アルゴリズムが開発された。
本稿では,ガウス突然変異を応用した遺伝的アルゴリズムの数学的直観について検討する。
論文 参考訳(メタデータ) (2022-01-02T04:18:25Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
我々は、容易で、拡張性があり、堅牢な進化的欲求アルゴリズム(AdaLead)を開発した。
AdaLeadは、様々な生物学的に動機づけられたシーケンスデザインの課題において、アートアプローチのより複雑な状態を克服する、驚くほど強力なベンチマークである。
論文 参考訳(メタデータ) (2020-10-05T16:40:38Z) - Devolutionary genetic algorithms with application to the minimum
labeling Steiner tree problem [0.0]
本稿では、進化的遺伝的アルゴリズムを特徴付けるとともに、最小ラベル付けスタイナーツリー(MLST)問題を解く際の性能を評価する。
我々は、進化的アルゴリズムを、時間とともに超最適で実現不可能な解の集団を進化させることによって実現可能な解に到達する過程として定義する。
我々は, 交叉, 突然変異, 適合性などの古典的進化的概念が, 最適解, 最適解に到達するためにどのように適応できるかを示す。
論文 参考訳(メタデータ) (2020-04-18T13:27:28Z) - The data-driven physical-based equations discovery using evolutionary
approach [77.34726150561087]
与えられた観測データから数学的方程式を発見するアルゴリズムについて述べる。
このアルゴリズムは遺伝的プログラミングとスパース回帰を組み合わせたものである。
解析方程式の発見や偏微分方程式(PDE)の発見にも用いられる。
論文 参考訳(メタデータ) (2020-04-03T17:21:57Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
我々は,数千の候補アルゴリズムの固定セットを考慮に入れた,極端なアルゴリズム選択(XAS)の設定を提案する。
我々は、XAS設定に対する最先端のAS技術の適用性を評価し、Dyadic特徴表現を利用したアプローチを提案する。
論文 参考訳(メタデータ) (2020-01-29T09:40:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。