Effective AER Object Classification Using Segmented
Probability-Maximization Learning in Spiking Neural Networks
- URL: http://arxiv.org/abs/2002.06199v1
- Date: Fri, 14 Feb 2020 04:10:58 GMT
- Title: Effective AER Object Classification Using Segmented
Probability-Maximization Learning in Spiking Neural Networks
- Authors: Qianhui Liu, Haibo Ruan, Dong Xing, Huajin Tang, Gang Pan
- Abstract summary: Address event representation (AER) cameras have attracted more attention due to the advantages of high temporal resolution and low power consumption.
We propose an AER object classification model using a novel segmented probability-maximization (SPA) learning algorithm.
- Score: 23.44400682585093
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Address event representation (AER) cameras have recently attracted more
attention due to the advantages of high temporal resolution and low power
consumption, compared with traditional frame-based cameras. Since AER cameras
record the visual input as asynchronous discrete events, they are inherently
suitable to coordinate with the spiking neural network (SNN), which is
biologically plausible and energy-efficient on neuromorphic hardware. However,
using SNN to perform the AER object classification is still challenging, due to
the lack of effective learning algorithms for this new representation. To
tackle this issue, we propose an AER object classification model using a novel
segmented probability-maximization (SPA) learning algorithm. Technically, 1)
the SPA learning algorithm iteratively maximizes the probability of the classes
that samples belong to, in order to improve the reliability of neuron responses
and effectiveness of learning; 2) a peak detection (PD) mechanism is introduced
in SPA to locate informative time points segment by segment, based on which
information within the whole event stream can be fully utilized by the
learning. Extensive experimental results show that, compared to
state-of-the-art methods, not only our model is more effective, but also it
requires less information to reach a certain level of accuracy.
Related papers
- Hyperspectral Image Classification Based on Faster Residual Multi-branch Spiking Neural Network [6.166929138912052]
This paper builds a spiking neural network (SNN) based on the leaky integrate-and-fire (LIF) neuron model for HSI classification tasks.
SNN-SWMR requires a time step reduction of about 84%, training time, and testing time reduction of about 63% and 70% at the same accuracy.
arXiv Detail & Related papers (2024-09-18T00:51:01Z) - EventF2S: Asynchronous and Sparse Spiking AER Framework using
Neuromorphic-Friendly Algorithm [2.469315273321826]
Spiking Neural Network (SNN) has become the inherent choice for AER data processing.
We introduce a brain-inspired AER-SNN object recognition solution, which includes a data encoder integrated with a First-To-Spike recognition network.
arXiv Detail & Related papers (2024-01-28T19:42:05Z) - Sparse Multitask Learning for Efficient Neural Representation of Motor
Imagery and Execution [30.186917337606477]
We introduce a sparse multitask learning framework for motor imagery (MI) and motor execution (ME) tasks.
Given a dual-task CNN model for MI-ME classification, we apply a saliency-based sparsification approach to prune superfluous connections.
Our results indicate that this tailored sparsity can mitigate the overfitting problem and improve the test performance with small amount of data.
arXiv Detail & Related papers (2023-12-10T09:06:16Z) - Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - A SPA-based Manifold Learning Framework for Motor Imagery EEG Data
Classification [2.4727719996518487]
This paper proposes a manifold learning framework to classify two types of EEG data from motor imagery (MI) tasks.
For feature extraction, it is implemented by Common Spatial Pattern (CSP) from the preprocessed EEG signals.
In the neighborhoods of the features for classification, the local approximation to the support of the data is obtained, and then the features are assigned to the classes with the closest support.
arXiv Detail & Related papers (2021-07-30T06:18:05Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
We propose a simple graph-based network structure called GCHP, which utilizes only graph convolutional layers.
We show that GCHP can significantly reduce training time and the likelihood ratio loss with interarrival time probability assumptions can greatly improve the model performance.
arXiv Detail & Related papers (2021-07-07T16:59:14Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - A Study On the Effects of Pre-processing On Spatio-temporal Action
Recognition Using Spiking Neural Networks Trained with STDP [0.0]
It is important to study the behavior of SNNs trained with unsupervised learning methods on video classification tasks.
This paper presents methods of transposing temporal information into a static format, and then transforming the visual information into spikes using latency coding.
We show the effect of the similarity in the shape and speed of certain actions on action recognition with spiking neural networks.
arXiv Detail & Related papers (2021-05-31T07:07:48Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.