論文の概要: Accurate Stress Assessment based on functional Near Infrared
Spectroscopy using Deep Learning Approach
- arxiv url: http://arxiv.org/abs/2002.06282v1
- Date: Fri, 14 Feb 2020 23:55:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-01 05:16:33.271736
- Title: Accurate Stress Assessment based on functional Near Infrared
Spectroscopy using Deep Learning Approach
- Title(参考訳): 深層学習を用いた機能近赤外分光法による精密応力評価
- Authors: Mahya Mirbagheri, Ata Jodeiri, Naser Hakimi, Vahid Zakeri, Seyed
Kamaledin Setarehdan
- Abstract要約: 本研究では,10名の健常者から記録された脳の機能的近赤外分光法(fNIRS)を用いて,モントリオール・イメージング・ストレス・タスクによって引き起こされるストレスを評価する。
実験の結果, トレーニングされたfNIRSモデルは, 88.52~0.77%の精度で応力分類を行うことがわかった。
その低い計算コストは、リアルタイムのストレスアセスメントに適用される可能性を開く。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stress is known as one of the major factors threatening human health. A large
number of studies have been performed in order to either assess or relieve
stress by analyzing the brain and heart-related signals. In this study, signals
produced by functional Near-Infrared Spectroscopy (fNIRS) of the brain recorded
from 10 healthy volunteers are employed to assess the stress induced by the
Montreal Imaging Stress Task by means of a deep learning system. The proposed
deep learning system consists of two main parts: First, the one-dimensional
convolutional neural network is employed to build informative feature maps.
Then, a stack of deep fully connected layers is used to predict the stress
existence probability. Experiment results showed that the trained fNIRS model
performs stress classification by achieving 88.52 -+ 0.77% accuracy. Employment
of the proposed deep learning system trained on the fNIRS measurements leads to
higher stress classification accuracy than the existing methods proposed in
fNIRS studies in which the same experimental procedure has been employed. The
proposed method suggests better stability with lower variation in prediction.
Furthermore, its low computational cost opens up the possibility to be applied
in real-time stress assessment.
- Abstract(参考訳): ストレスは人間の健康を脅かす主要な要因の1つとして知られている。
脳や心臓関連信号を分析してストレスを評価するか緩和するために、多くの研究がなされている。
本研究では,健常者10名の脳の機能的近赤外分光法(fnirs)による信号を用いて,モントリオール・イメージングストレス課題によって引き起こされるストレスを深層学習システムを用いて評価する。
提案するディープラーニングシステムは,主に2つの部分から構成される。まず,情報的特徴マップを構築するために,一次元畳み込みニューラルネットワークを用いる。
次に、応力存在確率を予測するために、深い完全連結層のスタックを用いる。
実験の結果, トレーニングされたfNIRSモデルは, 88.52~0.77%の精度で応力分類を行うことがわかった。
fnirs測定に基づいて訓練された深層学習システムの採用は、同じ実験手順を用いたfnirs研究で提案された既存の方法よりも高い応力分類精度をもたらす。
提案手法は予測のばらつきが少ないほど安定性が向上することを示す。
さらに、計算コストの低さは、リアルタイムストレス評価に適用できる可能性を開く。
関連論文リスト
- Continuous Wavelet Transformation and VGG16 Deep Neural Network for Stress Classification in PPG Signals [0.22499166814992436]
本研究は,光胸腺X線信号によるストレス分類における画期的なアプローチを提案する。
連続ウェーブレット変換(CWT)を実証されたVGG16に組み込むことで,ストレス評価精度と信頼性を向上させる。
論文 参考訳(メタデータ) (2024-10-17T19:29:52Z) - Stress Assessment with Convolutional Neural Network Using PPG Signals [0.22499166814992436]
本研究は,Empatica E4 センサによって記録された生の PPG 信号を用いてストレスのある事象を評価する新しい手法の開発に焦点をあてる。
マルチレイヤパーセプトロン(MLP)と組み合わせた適応畳み込みニューラルネットワーク(CNN)を用いて、ストレスのある事象の検出を実現している。
この研究は、一般公開され、ウェアラブルストレスとエフェクト検出(WESAD)と名付けられたデータセットを使用する。
論文 参考訳(メタデータ) (2024-10-16T06:24:16Z) - Machine Learning-based Estimation of Respiratory Fluctuations in a Healthy Adult Population using BOLD fMRI and Head Motion Parameters [39.96015789655091]
多くのfMRI研究では、呼吸信号が欠如しているか、品質が悪いことがしばしばある。
周辺記録装置を必要とせずに、fMRIデータから直接呼吸変動(RV)波形を抽出するツールを持つことは、非常に有益である。
本研究では,頭部運動パラメータとBOLD信号を用いたRV波形再構成のためのCNNモデルを提案する。
論文 参考訳(メタデータ) (2024-04-30T21:53:11Z) - Event-Driven Learning for Spiking Neural Networks [43.17286932151372]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの分野で注目されている。
バックプロパゲーション学習コストを最小限に抑えるために、SNNのスパースイベント駆動プロパティから効果的に利益を得るには、依然としてオープンな課題である。
本稿では,スパイクタイミング依存イベント駆動(STD-ED)アルゴリズムと膜電位依存イベント駆動(MPD-ED)アルゴリズムの2つの新しい学習手法を紹介する。
論文 参考訳(メタデータ) (2024-03-01T04:17:59Z) - A Feature Selection Method for Driver Stress Detection Using Heart Rate
Variability and Breathing Rate [0.0]
ドライバーのストレスは、世界中の自動車事故と死の主な原因である。
ストレスは心拍数や呼吸速度に測定可能な影響を与え、そのような測定からストレスレベルを推定することができる。
ガルバニック皮膚反応は、生理的ストレスと心理的ストレス、および極端な感情によって引き起こされる呼吸を測定するための一般的なテストである。
論文 参考訳(メタデータ) (2023-02-03T08:54:55Z) - Neural Importance Sampling for Rapid and Reliable Gravitational-Wave
Inference [59.040209568168436]
まず、ニューラルネットワークを用いてベイズ後部への高速な提案を行い、その基礎となる可能性と事前に基づいて重み付けを行う。
本発明は,(1)ネットワーク不正確性のない修正後部,(2)提案案の評価と故障事例の同定のための性能診断(サンプル効率),(3)ベイズ証拠の偏りのない推定を提供する。
LIGOとVirgoで観測された42個のブラックホールをSEOBNRv4PHMとIMRPhenomHMXP波形モデルで解析した。
論文 参考訳(メタデータ) (2022-10-11T18:00:02Z) - PhysioMTL: Personalizing Physiological Patterns using Optimal Transport
Multi-Task Regression [21.254400561280296]
心拍変動 (HRV) は、自律神経活動の実用的で非侵襲的な指標である。
我々は,マルチタスク学習フレームワークにおける最適輸送理論を利用して,生理的マルチタスク学習(PhysioMTL)を開発する。
論文 参考訳(メタデータ) (2022-03-19T19:14:25Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
訓練可能なパラメータが制限された小さなニューラルネットワークは、多くの単純なタスクに対してリソース効率の高い候補となる。
学習過程において隠れた層内のニューロンの多様性を探索する。
ニューロンの多様性がモデルの予測にどのように影響するかを分析する。
論文 参考訳(メタデータ) (2021-09-20T15:12:16Z) - Personalized Stress Monitoring using Wearable Sensors in Everyday
Settings [9.621481727547215]
心拍数(HR)と心拍変動率(HRV)に基づく日常生活ストレスレベルの客観的予測について検討する。
本稿では、ラベル付けのためのデータサンプルの調整可能なコレクションをサポートする、個人化されたストレス監視のための階層化システムアーキテクチャと、ラベル付けのためのリアルタイムデータのストリームから情報化サンプルを選択する方法を提案する。
論文 参考訳(メタデータ) (2021-07-31T04:15:15Z) - Predictive Coding Can Do Exact Backpropagation on Any Neural Network [40.51949948934705]
計算グラフ上で直接定義することで(ILと)Z-ILを一般化する。
これは、任意のニューラルネットワーク上のパラメータを更新する方法でBPと同等であることが示されている最初の生物学的に実行可能なアルゴリズムです。
論文 参考訳(メタデータ) (2021-03-08T11:52:51Z) - Multi-Sample Online Learning for Spiking Neural Networks based on
Generalized Expectation Maximization [42.125394498649015]
スパイキングニューラルネットワーク(SNN)は、バイナリニューラルダイナミックアクティベーションを通じて処理することで、生物学的脳の効率の一部をキャプチャする。
本稿では, シナプス重みを共有しながら, 独立したスパイキング信号をサンプリングする複数のコンパートメントを活用することを提案する。
鍵となる考え方は、これらの信号を使ってログライクなトレーニング基準のより正確な統計的推定と勾配を求めることである。
論文 参考訳(メタデータ) (2021-02-05T16:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。