論文の概要: Stress Assessment with Convolutional Neural Network Using PPG Signals
- arxiv url: http://arxiv.org/abs/2410.12273v1
- Date: Wed, 16 Oct 2024 06:24:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:41:44.584323
- Title: Stress Assessment with Convolutional Neural Network Using PPG Signals
- Title(参考訳): PPG信号を用いた畳み込みニューラルネットワークによる応力評価
- Authors: Yasin Hasanpoor, Bahram Tarvirdizadeh, Khalil Alipour, Mohammad Ghamari,
- Abstract要約: 本研究は,Empatica E4 センサによって記録された生の PPG 信号を用いてストレスのある事象を評価する新しい手法の開発に焦点をあてる。
マルチレイヤパーセプトロン(MLP)と組み合わせた適応畳み込みニューラルネットワーク(CNN)を用いて、ストレスのある事象の検出を実現している。
この研究は、一般公開され、ウェアラブルストレスとエフェクト検出(WESAD)と名付けられたデータセットを使用する。
- 参考スコア(独自算出の注目度): 0.22499166814992436
- License:
- Abstract: Stress is one of the main issues of nowadays lifestyle. If it becomes chronic it can have adverse effects on the human body. Thus, the early detection of stress is crucial to prevent its hurting effects on the human body and have a healthier life. Stress can be assessed using physiological signals. To this end, Photoplethysmography (PPG) is one of the most favorable physiological signals for stress assessment. This research is focused on developing a novel technique to assess stressful events using raw PPG signals recorded by Empatica E4 sensor. To achieve this goal, an adaptive convolutional neural network (CNN) combined with Multilayer Perceptron (MLP) has been utilized to realize the detection of stressful events. This research will use a dataset that is publicly available and named wearable stress and effect detection (WESAD). This dataset will be used to simulate the proposed model and to examine the advantages of the proposed developed model. The proposed model in this research will be able to distinguish between normal events and stressful events. This model will be able to detect stressful events with an accuracy of 96.7%.
- Abstract(参考訳): ストレスは現代のライフスタイルの主要な問題の一つである。
慢性化すると人体に悪影響を及ぼすことがある。
したがって、ストレスの早期検出は、人体への傷害効果を予防し、より健康な生活を送るために重要である。
ストレスは生理的信号を用いて評価することができる。
この目的のために、光胸腺造影(PPG)は、ストレスアセスメントにおいて最も好ましい生理的シグナルの1つである。
本研究は,Empatica E4 センサによって記録された生の PPG 信号を用いてストレスのある事象を評価する新しい手法の開発に焦点をあてる。
この目的を達成するために、多層パーセプトロン(MLP)と組み合わせた適応畳み込みニューラルネットワーク(CNN)を用いて、ストレスのある事象の検出を実現している。
この研究は、一般公開され、ウェアラブルストレスとエフェクト検出(WESAD)と名付けられたデータセットを使用する。
このデータセットは、提案したモデルをシミュレートし、提案したモデルの有効性を検討するために使用される。
この研究で提案されたモデルは、通常の出来事とストレスの多い出来事を区別することができる。
このモデルでは、96.7%の精度でストレスのある事象を検出することができる。
関連論文リスト
- Tracing Human Stress from Physiological Signals using UWB Radar [31.246225867596337]
本稿では,人間のストレス状態の連続検出を重視したストレス追跡問題を正式に定義する。
DSTと呼ばれる新しい応力追跡法が提案されている。
実験の結果,提案手法は人間のストレス状態の追跡において,すべてのベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2024-10-14T04:47:16Z) - Stress Detection Using PPG Signal and Combined Deep CNN-MLP Network [0.20971479389679332]
この研究は、ストレス事象を検出するためにPSG信号を利用する。
この研究で使用されるPG信号は、UBFC-Physと名付けられた最新の公開データセットから収集される。
その結果, 応力を約82%の精度で検出できることが示唆された。
論文 参考訳(メタデータ) (2024-10-10T13:38:55Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
本稿では,リアルタイム脳波信号解析のための新しいグラフベース残状態更新機構(REST)を提案する。
グラフニューラルネットワークとリカレント構造の組み合わせを活用することで、RESTは、非ユークリッド幾何学とEEGデータ内の時間的依存関係の両方を効率的にキャプチャする。
本モデルは,発作検出と分類作業において高い精度を示す。
論文 参考訳(メタデータ) (2024-06-03T16:30:19Z) - Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection [5.304745246313982]
本研究では,2次応力検出のためのHRV機能に基づいて学習した機械学習モデルの一般化可能性について検討する。
以上の結果から,モデル一般化可能性に重要な因子であるストレスタイプが示唆された。
我々は、新しい環境にHRVベースのストレスモデルを展開する際に、ストレスタイプをマッチングすることを推奨する。
論文 参考訳(メタデータ) (2024-05-06T14:47:48Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
不安やストレスと高覚醒感情との関連が示された生理的特徴の一般化可能性を評価する。
この研究は、心電図やEDA信号からストレスと覚醒を横断する最初のクロスコーパス評価であり、ストレス検出の一般化性に関する新たな発見に寄与した。
論文 参考訳(メタデータ) (2024-01-23T16:49:54Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
我々はDriPPと呼ばれる新しい統計点過程モデルを開発する。
我々は、このモデルのパラメータを推定するために、高速で原理化された予測最大化(EM)アルゴリズムを導出する。
標準MEGデータセットの結果から,我々の手法が事象関連ニューラルレスポンスを明らかにすることが示された。
論文 参考訳(メタデータ) (2021-12-08T13:07:21Z) - The Causal Neural Connection: Expressiveness, Learnability, and
Inference [125.57815987218756]
構造因果モデル (Structuor causal model, SCM) と呼ばれるオブジェクトは、調査中のシステムのランダムな変動のメカニズムと源の集合を表す。
本稿では, 因果的階層定理 (Thm. 1, Bareinboim et al., 2020) がまだニューラルモデルに対して成り立っていることを示す。
我々はニューラル因果モデル(NCM)と呼ばれる特殊なタイプのSCMを導入し、因果推論に必要な構造的制約をエンコードする新しいタイプの帰納バイアスを定式化する。
論文 参考訳(メタデータ) (2021-07-02T01:55:18Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - StressNet: Detecting Stress in Thermal Videos [10.453959171422147]
本稿では, サーマルビデオから生理的信号を取得し, ストレス状態を分類するための新しい手法を提案する。
ストレスネット (StressNet) は、ストレス人の定量的指標と考えられる心交感神経活動の変化の尺度であるISTI (Initial Systolic Time Interval) を再構成する。
詳細な評価では、ISTI信号の95%の精度で推定し、平均精度0.842で応力を検出することが示されている。
論文 参考訳(メタデータ) (2020-11-18T20:47:23Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
非生理的表現と生理的特徴を混同するための横断的特徴分離戦略を提案する。
次に, 蒸留された生理特性を用いて, 頑健なマルチタスク生理測定を行った。
歪んだ特徴は、最終的に平均HR値やr信号のような複数の生理的信号の合同予測に使用される。
論文 参考訳(メタデータ) (2020-07-16T09:39:17Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。