論文の概要: Automatic lesion segmentation and Pathological Myopia classification in
fundus images
- arxiv url: http://arxiv.org/abs/2002.06382v1
- Date: Sat, 15 Feb 2020 13:38:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 23:00:23.269237
- Title: Automatic lesion segmentation and Pathological Myopia classification in
fundus images
- Title(参考訳): 眼底画像における病変の自動分割と病理的近視分類
- Authors: Cefas Rodrigues Freire, Julio Cesar da Costa Moura, Daniele Montenegro
da Silva Barros and Ricardo Alexsandro de Medeiros Valentim
- Abstract要約: 病理組織学的ミオピア (PM) の診断と, 視神経円板 (OD) , 眼窩, 萎縮, 剥離などの網膜構造, 病変の検出のためのアルゴリズムを提案する。
これらの課題は, PM患者からの根底画像撮影において実施され, PALM(Pathological Myopia Challenge)への参加が求められている。
- 参考スコア(独自算出の注目度): 1.4174475093445236
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper we present algorithms to diagnosis Pathological Myopia (PM) and
detection of retinal structures and lesions such asOptic Disc (OD), Fovea,
Atrophy and Detachment. All these tasks were performed in fundus imaging from
PM patients and they are requirements to participate in the Pathologic Myopia
Challenge (PALM). The challenge was organized as a half day Challenge, a
Satellite Event of The IEEE International Symposium on Biomedical Imaging in
Venice Italy.Our method applies different Deep Learning techniques for each
task. Transfer learning is applied in all tasks using Xception as the baseline
model. Also, some key ideas of YOLO architecture are used in the Optic Disc
segmentation algorithm pipeline. We have evaluated our model's performance
according the challenge rules in terms of AUC-ROC, F1-Score, Mean Dice Score
and Mean Euclidean Distance. For initial activities our method has shown
satisfactory results.
- Abstract(参考訳): 本稿では,病理組織学的近視(PM)の診断アルゴリズムと,視神経円板(OD),眼窩,萎縮,剥離などの網膜構造と病変の検出について述べる。
これらの課題は, PM患者からの根底画像撮影において実施され, PALM(Pathological Myopia Challenge)に参加する必要が生じた。
この課題は、イタリアで開かれたieee国際バイオメディカルイメージングシンポジウム(ieee international symposium on biomedical imaging in vene italy)の衛星イベント「a half day challenge」として組織された。
伝達学習はXceptionをベースラインモデルとしてすべてのタスクに適用する。
また、YOLOアーキテクチャのいくつかの重要なアイデアは、光学ディスクセグメンテーションアルゴリズムパイプラインで使用されている。
我々は,AUC-ROC,F1-Score,Mean Dice Score,Mean Euclidean Distanceの観点から,課題ルールに従ってモデルの性能を評価した。
初期活動において,本手法は良好な結果を示した。
関連論文リスト
- HistoSegCap: Capsules for Weakly-Supervised Semantic Segmentation of
Histological Tissue Type in Whole Slide Images [19.975420988169454]
デジタル病理学では、物理的組織スライドを高解像度の全体スライド画像(WSI)に変換する。
多数の顕微鏡フィールドを持つ大きな組織学スライドは、ビジュアルサーチの課題を提起する。
コンピュータ支援診断システム(CAD)は、WSIを効率的に検査し、診断に関連のある領域を識別するための視覚的補助を提供する。
論文 参考訳(メタデータ) (2024-02-16T17:44:11Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
深層学習に基づくニューラルネットワークを用いて,OCTの軸運動とコロナ運動のアーチファクトを1つのスキャンで補正する。
実験結果から, 提案手法は動作アーチファクトを効果的に補正し, 誤差が他の方法よりも小さいことを示す。
論文 参考訳(メタデータ) (2023-05-27T03:55:19Z) - DRAC: Diabetic Retinopathy Analysis Challenge with Ultra-Wide Optical
Coherence Tomography Angiography Images [51.27125547308154]
第25回医用画像コンピューティング・コンピュータ支援介入国際会議(MICCAI 2022)にともなうDRAC糖尿病網膜症解析チャレンジの企画を行った。
この課題は、DR病変の分節化、画像品質評価、DRグレーディングの3つのタスクから構成される。
本稿では,課題の各課題について,トップパフォーマンスのソリューションと結果の要約と分析を行う。
論文 参考訳(メタデータ) (2023-04-05T12:04:55Z) - Dataset and Evaluation algorithm design for GOALS Challenge [39.424658343179274]
緑内障は視神経の損傷により不可逆的な視力喪失を引き起こし,緑内障の治療法はない。
OCTによる緑内障の診断を定量化するためのAI技術の研究を促進するため,緑内障OCT解析・層干渉(GOALS)チャレンジを開催した。
本稿では2つのサブタスクのベースラインと評価手法について述べる。
論文 参考訳(メタデータ) (2022-07-29T02:51:26Z) - FetReg2021: A Challenge on Placental Vessel Segmentation and
Registration in Fetoscopy [52.3219875147181]
2-Twin Transfusion Syndrome (TTTS) に対するレーザー光凝固法が広く採用されている。
このプロシージャは、視野が限られたこと、フェトスコープの操作性が悪いこと、視認性が悪いこと、照明の変動性のために特に困難である。
コンピュータ支援介入(CAI)は、シーン内の重要な構造を特定し、ビデオモザイクを通して胎児の視野を広げることで、外科医に意思決定支援と文脈認識を提供する。
7つのチームがこの課題に参加し、そのモデルパフォーマンスを、6フェットから658ピクセルの注釈付き画像の見当たらないテストデータセットで評価した。
論文 参考訳(メタデータ) (2022-06-24T23:44:42Z) - JOINED : Prior Guided Multi-task Learning for Joint Optic Disc/Cup
Segmentation and Fovea Detection [1.2250035750661867]
そこで本研究では, JOINEDという新しい手法を用いて, 複数タスク学習を先導し, OD/OCセグメンテーションと卵胞検出を行った。
提案するJOINEDパイプラインは粗い段と細かい段からなる。
実験の結果,提案したJOINEDは既存の最先端手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-01T13:47:48Z) - ADAM Challenge: Detecting Age-related Macular Degeneration from Fundus
Images [44.212866865895485]
我々は、I SBI 2020カンファレンスの衛星イベントとして、初めて老化関連黄斑変性症(ADAM)の自動検出課題を設定した。
ADAMチャレンジは、基礎画像からAMDを検出する主要なトピックをカバーする4つのタスクから構成される。
本稿では,課題,データセット,評価手法を紹介するとともに,各タスクに参加するチームの結果を要約し,分析する。
論文 参考訳(メタデータ) (2022-02-16T10:49:49Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
バイナリ・セマンティック・エンベディング(LBSE)の学習方法を提案する。
効率的な埋め込み、分類、検索を行い、組織像の解釈可能なコンピュータ支援診断を提供する。
3つのベンチマークデータセットで実施された実験は、様々なシナリオにおいてLBSEの優位性を検証する。
論文 参考訳(メタデータ) (2020-10-07T08:36:44Z) - Pathological myopia classification with simultaneous lesion segmentation
using deep learning [16.456009188497823]
最近導入されたPathologicalal Myopiaデータセットのために開発された畳み込みニューラルネットワークの結果に関する調査報告
我々は,新しい視神経頭(ONH)による萎縮と葉のセグメンテーションの予測法を提案する。
論文 参考訳(メタデータ) (2020-06-04T12:21:06Z) - AGE Challenge: Angle Closure Glaucoma Evaluation in Anterior Segment
Optical Coherence Tomography [61.405005501608706]
アングル閉鎖緑内障(ACG)は開角緑内障よりも攻撃的な疾患である。
前部セグメント光コヒーレンス・トモグラフィー(AS-OCT)は、開角度から角度閉鎖を識別する高速で接触のない方法を提供する。
既存のメソッドを均一に評価するためのパブリックなAS-OCTデータセットは存在しない。
私たちは,MICCAI 2019と共同で開催したAngle closure Glaucoma Evaluation Challenge (AGE)を組織した。
論文 参考訳(メタデータ) (2020-05-05T14:55:01Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
未熟児網膜症(英: Retinopathy of Prematurity、ROP)は、主に体重の低い未熟児に影響を及ぼす眼疾患である。
網膜の血管の増殖を招き、視力喪失を招き、最終的には網膜剥離を招き、失明を引き起こす。
近年,ディープラーニングを用いて診断を自動化する試みが盛んに行われている。
本稿では,従来のモデルの成功を基盤として,オブジェクトセグメンテーションと畳み込みニューラルネットワーク(CNN)を組み合わせた新しいアーキテクチャを開発する。
提案システムでは,まず対象分割モデルを訓練し,画素レベルでの区切り線を識別し,その結果のマスクを追加の"カラー"チャネルとして付加する。
論文 参考訳(メタデータ) (2020-04-03T14:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。