Enhanced Analysis for the Decoy-State Method
- URL: http://arxiv.org/abs/2411.00391v1
- Date: Fri, 01 Nov 2024 06:38:37 GMT
- Title: Enhanced Analysis for the Decoy-State Method
- Authors: Zitai Xu, Yizhi Huang, Xiongfeng Ma,
- Abstract summary: We first revisit and improve the key rate bound for the decoy-state method.
We then propose an enhanced framework for statistical fluctuation analysis.
Our approach to fluctuation analysis is not only applicable in quantum cryptography but can also be adapted to other quantum information processing tasks.
- Score: 0.40964539027092917
- License:
- Abstract: Quantum key distribution is a cornerstone of quantum cryptography, enabling secure communication through the principles of quantum mechanics. In reality, most practical implementations rely on the decoy-state method to ensure security against photon-number-splitting attacks. A significant challenge in realistic quantum cryptosystems arises from statistical fluctuations with finite data sizes, which complicate the key-rate estimation due to the nonlinear dependence on the phase error rate. In this study, we first revisit and improve the key rate bound for the decoy-state method. We then propose an enhanced framework for statistical fluctuation analysis. By employing our fluctuation analysis on the improved bound, we demonstrate enhancement in key generation rates through numerical simulations with typical experimental parameters. Furthermore, our approach to fluctuation analysis is not only applicable in quantum cryptography but can also be adapted to other quantum information processing tasks, particularly when the objective and experimental variables exhibit a linear relationship.
Related papers
- Optimizing QKD efficiency by addressing chromatic dispersion and time measurement uncertainty [0.0]
We present a Quantum Key Distribution (QKD) protocol that accounts for fundamental practical challenges.
Our analysis provides a comprehensive framework for understanding the impact of these physical phenomena on QKD efficiency.
In particular, by manipulating the chirp parameter of single-photon wave packets, we demonstrate significant improvements in key generation rates and an extended range of secure communication.
arXiv Detail & Related papers (2024-10-14T18:00:02Z) - Evaluation of phase shifts for non-relativistic elastic scattering using quantum computers [39.58317527488534]
This work reports the development of an algorithm that makes it possible to obtain phase shifts for generic non-relativistic elastic scattering processes on a quantum computer.
arXiv Detail & Related papers (2024-07-04T21:11:05Z) - Machine-learning-inspired quantum control in many-body dynamics [6.817811305553492]
We introduce a promising and versatile control neural network tailored to optimize control fields.
We address the problem of suppressing defect density and enhancing cat-state fidelity during the passage across the critical point in the quantum Ising model.
In comparison to gradient-based power-law quench methods, our approach demonstrates significant advantages for both small system sizes and long-term evolutions.
arXiv Detail & Related papers (2024-04-09T01:47:55Z) - Continuous Variable Based Quantum Communication in the Ocean [0.0]
This work investigates the impact of turbulence on the transmission of Gaussian light beams used in a continuous variable-based quantum key distribution system for underwater quantum communication.
We adopt the widely accepted ABCD matrix formalism, which provides a comprehensive framework for characterizing the propagation of optical beams through different media.
A numerical simulation framework is developed to assess the resulting losses and evaluate the performance of the proposed system.
arXiv Detail & Related papers (2024-01-24T06:09:20Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Harnessing high-dimensional temporal entanglement using limited interferometric setups [41.94295877935867]
We develop the first complete analysis of high-dimensional entanglement in the polarization-time-domain.
We show how to efficiently certify relevant density matrix elements and security parameters for Quantum Key Distribution.
We propose a novel setup that can further enhance the noise resistance of free-space quantum communication.
arXiv Detail & Related papers (2023-08-08T17:44:43Z) - Security of decoy-state quantum key distribution with correlated
intensity fluctuations [0.0]
Current decoy-state QKD setups operate at GHz repetition rates.
memory effects in the modulators and electronics that control them create correlations between the intensities of the emitted pulses.
This translates into information leakage about the selected intensities.
arXiv Detail & Related papers (2022-06-14T09:05:41Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Tight security bounds for decoy-state quantum key distribution [1.1563829079760959]
The BB84 quantum key distribution (QKD) combined with decoy-state method is currently the most practical protocol.
Here, we provide the rigorous and optimal analytic formula to solve the above tasks.
Our results can be widely applied to deal with statistical fluctuation in quantum cryptography protocols.
arXiv Detail & Related papers (2020-02-16T07:48:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.