論文の概要: Towards Detection of Subjective Bias using Contextualized Word
Embeddings
- arxiv url: http://arxiv.org/abs/2002.06644v1
- Date: Sun, 16 Feb 2020 18:39:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 18:07:14.166689
- Title: Towards Detection of Subjective Bias using Contextualized Word
Embeddings
- Title(参考訳): 文脈化単語埋め込みによる主観的バイアスの検出に向けて
- Authors: Tanvi Dadu, Kartikey Pant and Radhika Mamidi
- Abstract要約: Wiki Neutrality Corpus(WNC)を用いたBERTモデルを用いた主観バイアス検出実験を行った。
データセットは、ウィキペディアの編集から360万ドルのラベル付きインスタンスで構成され、バイアスのさまざまなインスタンスを削除する。
- 参考スコア(独自算出の注目度): 9.475039534437332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Subjective bias detection is critical for applications like propaganda
detection, content recommendation, sentiment analysis, and bias neutralization.
This bias is introduced in natural language via inflammatory words and phrases,
casting doubt over facts, and presupposing the truth. In this work, we perform
comprehensive experiments for detecting subjective bias using BERT-based models
on the Wiki Neutrality Corpus(WNC). The dataset consists of $360k$ labeled
instances, from Wikipedia edits that remove various instances of the bias. We
further propose BERT-based ensembles that outperform state-of-the-art methods
like $BERT_{large}$ by a margin of $5.6$ F1 score.
- Abstract(参考訳): 主観的バイアス検出は、プロパガンダ検出、コンテンツレコメンデーション、感情分析、バイアス中立化といったアプリケーションに不可欠である。
このバイアスは、炎症的な言葉やフレーズを通じて自然言語に導入され、事実に疑問を投げかけ、真実を先取りする。
本研究では, Wiki Neutrality Corpus (WNC) を用いたBERTモデルを用いて, 主観バイアスを検出するための総合実験を行った。
データセットは360k$のラベル付きインスタンスで構成され、wikipediaの編集でバイアスの様々なインスタンスを削除する。
我々はさらにBERTベースのアンサンブルを提案し、$BERT_{large}$のような最先端の手法を5.6ドルのF1スコアで上回ります。
関連論文リスト
- Mitigating Gender Bias in Contextual Word Embeddings [1.208453901299241]
本稿では,コンテキスト埋め込みにおける性別バイアスを大幅に軽減する,リップスティック(マスケ・ランゲージ・モデリング)の新たな目的関数を提案する。
また, 静的な埋め込みを嫌悪する新しい手法を提案し, 広範囲な解析と実験による実証実験を行った。
論文 参考訳(メタデータ) (2024-11-18T21:36:44Z) - Eliminating the Language Bias for Visual Question Answering with fine-grained Causal Intervention [9.859335795616028]
よりきめ細かい視点から言語バイアスを排除するために,CIBiという新たな因果介入訓練手法を提案する。
我々は、文脈バイアスを排除し、マルチモーダル表現を改善するために因果介入とコントラスト学習を用いる。
我々は,キーワードバイアスを抽出・排除するために,対実生成に基づく質問専用ブランチを新たに設計する。
論文 参考訳(メタデータ) (2024-10-14T06:09:16Z) - GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models [75.04426753720553]
開集合におけるバイアスを特定し,定量化し,説明するための枠組みを提案する。
このパイプラインはLarge Language Model (LLM)を活用して、一連のキャプションから始まるバイアスを提案する。
このフレームワークには、OpenBiasとGradBiasの2つのバリエーションがあります。
論文 参考訳(メタデータ) (2024-08-29T16:51:07Z) - Is There a One-Model-Fits-All Approach to Information Extraction? Revisiting Task Definition Biases [62.806300074459116]
定義バイアスは、モデルを誤解させる可能性のある負の現象である。
IEでは、情報抽出データセット間のバイアスと、情報抽出データセットとインストラクションチューニングデータセット間のバイアスの2つの定義バイアスを識別する。
本稿では, 定義バイアス測定, バイアス対応微調整, タスク固有バイアス緩和からなる多段階フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-25T03:19:20Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
近年の研究では、事前学習言語モデル(PLM)が、事実知識抽出において「急激なバイアス」に悩まされていることが示されている。
本稿では,突発バイアスを徹底的に調査し緩和することにより,既存のベンチマークの信頼性を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-03-15T02:04:35Z) - GPTBIAS: A Comprehensive Framework for Evaluating Bias in Large Language
Models [83.30078426829627]
大規模言語モデル(LLM)は人気を集め、大規模なユーザコミュニティで広く採用されている。
既存の評価手法には多くの制約があり、それらの結果は限定的な解釈可能性を示している。
本稿では,LPMの高性能性を活用し,モデル内のバイアスを評価するGPTBIASというバイアス評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-11T12:02:14Z) - Target-Aware Contextual Political Bias Detection in News [22.396285428304083]
ニュースにおける文レベルの政治的偏見検出は、文脈を考慮した偏見の理解を必要とする課題である。
メディアバイアス検出におけるこれまでの研究は、この事実を利用するための拡張技術を提案した。
本稿では、バイアスに敏感なターゲット認識アプローチを用いて、より注意深くコンテキストを探索する手法を提案する。
論文 参考訳(メタデータ) (2023-10-02T12:25:05Z) - Discovering and Mitigating Visual Biases through Keyword Explanation [66.71792624377069]
視覚バイアスをキーワードとして解釈するBias-to-Text(B2T)フレームワークを提案する。
B2Tは、CelebAの性別バイアス、ウォーターバードの背景バイアス、ImageNet-R/Cの分布シフトなど、既知のバイアスを特定することができる。
B2Tは、Dollar StreetやImageNetのような大きなデータセットで、新しいバイアスを明らかにする。
論文 参考訳(メタデータ) (2023-01-26T13:58:46Z) - Neural Media Bias Detection Using Distant Supervision With BABE -- Bias
Annotations By Experts [24.51774048437496]
本稿ではメディアバイアス研究のための頑健で多様なデータセットであるBABEについて述べる。
トピックとアウトレットの間でバランスが取れた3,700の文で構成されており、単語と文のレベルにメディアバイアスラベルが含まれている。
また,本データに基づいて,ニュース記事中のバイアス文を自動的に検出する手法も導入した。
論文 参考訳(メタデータ) (2022-09-29T05:32:55Z) - The SAME score: Improved cosine based bias score for word embeddings [49.75878234192369]
埋め込みにおけるセマンティックバイアスのための新しいバイアススコアであるPetを紹介した。
本研究は,下水道作業における意味バイアスを測定し,社会的バイアスの潜在的な原因を特定することができることを示す。
論文 参考訳(メタデータ) (2022-03-28T09:28:13Z) - "Thy algorithm shalt not bear false witness": An Evaluation of
Multiclass Debiasing Methods on Word Embeddings [3.0204693431381515]
本稿では,最先端のマルチクラス・デバイアス技術であるハード・デバイアス,ソフトウィート・デバイアス,コンセプタ・デバイアスについて検討する。
単語埋め込みアソシエーションテスト(WEAT)、平均コサイン類似度(MAC)、相対負性感覚バイアス(RNSB)によるバイアス除去を定量化することにより、共通のバイアス除去時のパフォーマンスを評価する。
論文 参考訳(メタデータ) (2020-10-30T12:49:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。