論文の概要: Target-Aware Contextual Political Bias Detection in News
- arxiv url: http://arxiv.org/abs/2310.01138v1
- Date: Mon, 2 Oct 2023 12:25:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-04 22:00:28.688881
- Title: Target-Aware Contextual Political Bias Detection in News
- Title(参考訳): ニュースにおける文脈的政治的バイアス検出
- Authors: Iffat Maab, Edison Marrese-Taylor, Yutaka Matsuo
- Abstract要約: ニュースにおける文レベルの政治的偏見検出は、文脈を考慮した偏見の理解を必要とする課題である。
メディアバイアス検出におけるこれまでの研究は、この事実を利用するための拡張技術を提案した。
本稿では、バイアスに敏感なターゲット認識アプローチを用いて、より注意深くコンテキストを探索する手法を提案する。
- 参考スコア(独自算出の注目度): 22.396285428304083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Media bias detection requires comprehensive integration of information
derived from multiple news sources. Sentence-level political bias detection in
news is no exception, and has proven to be a challenging task that requires an
understanding of bias in consideration of the context. Inspired by the fact
that humans exhibit varying degrees of writing styles, resulting in a diverse
range of statements with different local and global contexts, previous work in
media bias detection has proposed augmentation techniques to exploit this fact.
Despite their success, we observe that these techniques introduce noise by
over-generalizing bias context boundaries, which hinders performance. To
alleviate this issue, we propose techniques to more carefully search for
context using a bias-sensitive, target-aware approach for data augmentation.
Comprehensive experiments on the well-known BASIL dataset show that when
combined with pre-trained models such as BERT, our augmentation techniques lead
to state-of-the-art results. Our approach outperforms previous methods
significantly, obtaining an F1-score of 58.15 over state-of-the-art bias
detection task.
- Abstract(参考訳): メディアバイアス検出には、複数のニュースソースからの情報を包括的に統合する必要がある。
ニュースにおける文レベルの政治的バイアス検出も例外ではなく、文脈を考慮したバイアスの理解を必要とする課題であることが証明されている。
人間が様々な書き方を示すという事実に触発され、様々な局所的文脈とグローバル的文脈を持つ様々なステートメントを生み出し、メディアバイアス検出における以前の研究は、この事実を利用するために拡張技術を提案している。
彼らの成功にもかかわらず、これらの手法はバイアスコンテキスト境界を過度に一般化することでノイズを生じさせ、性能を阻害する。
この問題を軽減するために,データ拡張のためのバイアスに敏感な目標認識手法を用いて,より注意深く文脈を探索する手法を提案する。
よく知られているBASILデータセットに関する包括的な実験は、BERTのような事前訓練されたモデルと組み合わせることで、我々の拡張技術が最先端の結果をもたらすことを示している。
提案手法は従来の手法よりも優れ,最先端バイアス検出タスクに対してF1スコア58.15を得る。
関連論文リスト
- Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - Language-guided Detection and Mitigation of Unknown Dataset Bias [23.299264313976213]
本稿では,キャプションの部分的発生に基づく事前知識のないキーワードとして潜在的なバイアスを識別する枠組みを提案する。
我々のフレームワークは、事前知識のない既存のメソッドよりも優れているだけでなく、事前知識を前提としたメソッドにさえ匹敵する。
論文 参考訳(メタデータ) (2024-06-05T03:11:33Z) - Take Care of Your Prompt Bias! Investigating and Mitigating Prompt Bias in Factual Knowledge Extraction [56.17020601803071]
近年の研究では、事前学習言語モデル(PLM)が、事実知識抽出において「急激なバイアス」に悩まされていることが示されている。
本稿では,突発バイアスを徹底的に調査し緩和することにより,既存のベンチマークの信頼性を向上させることを目的とする。
論文 参考訳(メタデータ) (2024-03-15T02:04:35Z) - Prompt-and-Align: Prompt-Based Social Alignment for Few-Shot Fake News
Detection [50.07850264495737]
プロンプト・アンド・アライン(Prompt-and-Align、P&A)は、数発のフェイクニュース検出のための新しいプロンプトベースのパラダイムである。
我々はP&Aが、数発のフェイクニュース検出性能をかなりのマージンで新たな最先端に設定していることを示す。
論文 参考訳(メタデータ) (2023-09-28T13:19:43Z) - Towards Debiasing Frame Length Bias in Text-Video Retrieval via Causal
Intervention [72.12974259966592]
トリミングビデオクリップのトレーニングセットとテストセットのフレーム長差による時間偏差について,一意かつ体系的に検討した。
Epic-Kitchens-100, YouCook2, MSR-VTTデータセットについて, 因果脱バイアス法を提案し, 広範な実験およびアブレーション研究を行った。
論文 参考訳(メタデータ) (2023-09-17T15:58:27Z) - Introducing MBIB -- the first Media Bias Identification Benchmark Task
and Dataset Collection [24.35462897801079]
我々は,メディアバイアス識別ベンチマーク(MBIB)を導入し,メディアバイアスを共通の枠組みの下でグループ化する。
115のデータセットをレビューした後、9つのタスクを選択し、メディアバイアス検出技術を評価するために、22の関連するデータセットを慎重に提案する。
我々の結果は、ヘイトスピーチ、人種的偏見、性別的偏見は検出しやすいが、モデルが認知や政治的偏見といった特定のバイアスタイプを扱うのに苦労していることを示唆している。
論文 参考訳(メタデータ) (2023-04-25T20:49:55Z) - Exploiting Transformer-based Multitask Learning for the Detection of
Media Bias in News Articles [21.960154864540282]
メディアバイアスを検出するために,マルチタスク学習を用いて学習したトランスフォーマーに基づくディープラーニングアーキテクチャを提案する。
我々の最高のパフォーマンス実装は、マクロ$F_1$の0.776を実現しています。
論文 参考訳(メタデータ) (2022-11-07T12:22:31Z) - Neural Media Bias Detection Using Distant Supervision With BABE -- Bias
Annotations By Experts [24.51774048437496]
本稿ではメディアバイアス研究のための頑健で多様なデータセットであるBABEについて述べる。
トピックとアウトレットの間でバランスが取れた3,700の文で構成されており、単語と文のレベルにメディアバイアスラベルが含まれている。
また,本データに基づいて,ニュース記事中のバイアス文を自動的に検出する手法も導入した。
論文 参考訳(メタデータ) (2022-09-29T05:32:55Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
本稿では,スプリアス相関の因果的解釈による情報理論バイアス測定手法を提案する。
本稿では,バイアス正規化損失を含むアルゴリズムバイアスに対する新しいデバイアスフレームワークを提案する。
提案したバイアス測定とデバイアス法は、多様な現実シナリオで検証される。
論文 参考訳(メタデータ) (2022-01-10T01:19:31Z) - An Interdisciplinary Approach for the Automated Detection and
Visualization of Media Bias in News Articles [0.0]
メディアバイアスを識別するためのデータセットや手法を考案することを目指しています。
私のビジョンは、ニュース読者が偏見によるメディアカバレッジの違いを認識できるようにするシステムを開発することです。
論文 参考訳(メタデータ) (2021-12-26T10:46:32Z) - Mitigating Gender Bias Amplification in Distribution by Posterior
Regularization [75.3529537096899]
本稿では,男女差の増幅問題について,分布の観点から検討する。
後続正則化に基づくバイアス緩和手法を提案する。
私たちの研究はバイアス増幅の理解に光を当てている。
論文 参考訳(メタデータ) (2020-05-13T11:07:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。