論文の概要: CQ-VQA: Visual Question Answering on Categorized Questions
- arxiv url: http://arxiv.org/abs/2002.06800v1
- Date: Mon, 17 Feb 2020 06:45:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-31 12:54:08.211993
- Title: CQ-VQA: Visual Question Answering on Categorized Questions
- Title(参考訳): CQ-VQA: カテゴリ化された質問に対する視覚的回答
- Authors: Aakansha Mishra, Ashish Anand and Prithwijit Guha
- Abstract要約: 本稿では,視覚的質問応答(VQA)の課題を解決するために,新しい2階層型・エンドツーエンドモデルであるCQ-VQAを提案する。
質問分類器(QC)と呼ばれる第1レベルのCQ-VQAは、潜在的な回答検索スペースを減らすために質問を分類する。
第2のレベルは、回答予測器(AP)と呼ばれ、各質問カテゴリに対応する一組の別個の分類器から構成される。
- 参考スコア(独自算出の注目度): 3.0013352260516744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes CQ-VQA, a novel 2-level hierarchical but end-to-end model
to solve the task of visual question answering (VQA). The first level of
CQ-VQA, referred to as question categorizer (QC), classifies questions to
reduce the potential answer search space. The QC uses attended and fused
features of the input question and image. The second level, referred to as
answer predictor (AP), comprises of a set of distinct classifiers corresponding
to each question category. Depending on the question category predicted by QC,
only one of the classifiers of AP remains active. The loss functions of QC and
AP are aggregated together to make it an end-to-end model. The proposed model
(CQ-VQA) is evaluated on the TDIUC dataset and is benchmarked against
state-of-the-art approaches. Results indicate competitive or better performance
of CQ-VQA.
- Abstract(参考訳): 本稿では,視覚的質問応答(VQA)の課題を解決するために,新しい2段階の階層型だがエンドツーエンドのモデルであるCQ-VQAを提案する。
質問分類器(QC)と呼ばれる第1レベルのCQ-VQAは、潜在的な回答検索スペースを減らすために質問を分類する。
QCは、入力された質問と画像の付随および融合特徴を使用する。
第2のレベルは、回答予測器(AP)と呼ばれ、各質問カテゴリに対応する異なる分類器のセットからなる。
QCが予測する質問カテゴリによっては、APの分類器の1つのみがアクティブである。
QCとAPの損失関数は集約され、エンドツーエンドモデルとなる。
提案モデル (CQ-VQA) はTDIUCデータセット上で評価され, 最先端のアプローチに対してベンチマークされる。
その結果,CQ-VQAの競争力や性能が向上した。
関連論文リスト
- An Empirical Comparison of LM-based Question and Answer Generation
Methods [79.31199020420827]
質問と回答の生成(QAG)は、コンテキストが与えられた質問と回答のペアのセットを生成することで構成される。
本稿では,シーケンス・ツー・シーケンス言語モデル(LM)を微調整する3つの異なるQAG手法を用いて,ベースラインを確立する。
実験により、学習時間と推論時間の両方で計算的に軽量なエンドツーエンドQAGモデルが一般に堅牢であり、他のより複雑なアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-05-26T14:59:53Z) - Implications of Deep Circuits in Improving Quality of Quantum Question
Answering [0.0]
SelQA (Selection-based Question Answering) データセットの2つのクラスから質問分類を行った。
また、これらの分類結果を独自のルールベースのQAシステムで利用し、大幅な性能向上を観察する。
論文 参考訳(メタデータ) (2023-05-12T10:52:13Z) - Toward Unsupervised Realistic Visual Question Answering [70.67698100148414]
現実的なVQA(RVQA)の問題について検討し、モデルが答えられない質問(UQ)を拒絶し、答えられる質問(AQ)に答えなければならない。
1)データセットには不整合UQが多すぎること,(2)多数の注釈付きUQがトレーニングに必要とされること,の2つの欠点を最初に指摘した。
我々は、既存のVQAデータセットのAQと約29万の人間の注釈付きUQを組み合わせた新しいテストデータセットRGQAを提案する。
これは、画像と質問をランダムにペアリングして得られる擬似UQと、それを結合する。
論文 参考訳(メタデータ) (2023-03-09T06:58:29Z) - PACIFIC: Towards Proactive Conversational Question Answering over
Tabular and Textual Data in Finance [96.06505049126345]
我々はPACIFICという新しいデータセットを提案する。既存のCQAデータセットと比較すると、PACIFICは(i)活動性、(ii)数値推論、(iii)表とテキストのハイブリッドコンテキストの3つの重要な特徴を示す。
質問生成とCQAを組み合わせたPCQA(Proactive Conversational Question Answering)に基づいて,新しいタスクを定義する。
UniPCQAはPCQAのすべてのサブタスク上でマルチタスク学習を行い、Seeq2Seqの上位$kのサンプルをクロスバリデーションすることで、マルチタスク学習におけるエラー伝搬問題を緩和するための単純なアンサンブル戦略を取り入れている。
論文 参考訳(メタデータ) (2022-10-17T08:06:56Z) - Co-VQA : Answering by Interactive Sub Question Sequence [18.476819557695087]
本稿では,質問者,Oracle,Answererの3つのコンポーネントからなる対話型VQAフレームワークを提案する。
モデル毎に教師あり学習を行うために,VQA 2.0 と VQA-CP v2 データセット上で,各質問に対する SQS を構築する方法を提案する。
論文 参考訳(メタデータ) (2022-04-02T15:09:16Z) - PerCQA: Persian Community Question Answering Dataset [2.503043323723241]
コミュニティ質問回答 (Community Question Answering, CQA) は、現実の質問に対する回答を提供するフォーラムである。
CQAの最初のペルシア語データセットであるPerCQAを提示する。
このデータセットには、最も有名なペルシアのフォーラムからクロールされた質問と回答が含まれている。
論文 参考訳(メタデータ) (2021-12-25T14:06:41Z) - Improving Unsupervised Question Answering via Summarization-Informed
Question Generation [47.96911338198302]
質問生成 (QG) とは, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文, 質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、質問文、
我々は、自由なニュース要約データを使用し、宣言文を依存性解析、名前付きエンティティ認識、セマンティックロールラベリングを用いて適切な質問に変換する。
得られた質問は、元のニュース記事と組み合わせて、エンドツーエンドのニューラルQGモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-09-16T13:08:43Z) - Question Rewriting for Conversational Question Answering [15.355557454305776]
本稿では,TREC CAsT 2019パス検索データセット上で,新たな技術状況を設定する対話型QAアーキテクチャを提案する。
また,同じQRモデルにより,QACデータセットのQA性能が向上することを示す。
評価の結果,QRモデルは両データセットにおいてほぼ人間レベルの性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-04-30T09:27:43Z) - Template-Based Question Generation from Retrieved Sentences for Improved
Unsupervised Question Answering [98.48363619128108]
擬似学習データを用いてQAモデルを訓練するための教師なしアプローチを提案する。
関連した検索文に簡単なテンプレートを適用してQA学習のための質問を生成すると、元の文脈文よりも、下流QAのパフォーマンスが向上することを示す。
論文 参考訳(メタデータ) (2020-04-24T17:57:45Z) - SQuINTing at VQA Models: Introspecting VQA Models with Sub-Questions [66.86887670416193]
現状のVQAモデルでは、知覚や推論の問題に答える上で同等の性能を持つが、一貫性の問題に悩まされていることを示す。
この欠点に対処するため、サブクエスト対応ネットワークチューニング(SQuINT)というアプローチを提案する。
我々は,SQuINTがモデル一貫性を5%向上し,VQAにおける推論問題の性能も改善し,注意マップも改善したことを示す。
論文 参考訳(メタデータ) (2020-01-20T01:02:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。