論文の概要: Implications of Deep Circuits in Improving Quality of Quantum Question
Answering
- arxiv url: http://arxiv.org/abs/2305.07374v1
- Date: Fri, 12 May 2023 10:52:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-15 13:17:09.233334
- Title: Implications of Deep Circuits in Improving Quality of Quantum Question
Answering
- Title(参考訳): 量子質問応答の品質向上における深い回路の影響
- Authors: Pragya Katyayan, Nisheeth Joshi
- Abstract要約: SelQA (Selection-based Question Answering) データセットの2つのクラスから質問分類を行った。
また、これらの分類結果を独自のルールベースのQAシステムで利用し、大幅な性能向上を観察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Question Answering (QA) has proved to be an arduous challenge in the area of
natural language processing (NLP) and artificial intelligence (AI). Many
attempts have been made to develop complete solutions for QA as well as
improving significant sub-modules of the QA systems to improve the overall
performance through the course of time. Questions are the most important piece
of QA, because knowing the question is equivalent to knowing what counts as an
answer (Harrah in Philos Sci, 1961 [1]). In this work, we have attempted to
understand questions in a better way by using Quantum Machine Learning (QML).
The properties of Quantum Computing (QC) have enabled classically intractable
data processing. So, in this paper, we have performed question classification
on questions from two classes of SelQA (Selection-based Question Answering)
dataset using quantum-based classifier algorithms-quantum support vector
machine (QSVM) and variational quantum classifier (VQC) from Qiskit (Quantum
Information Science toolKIT) for Python. We perform classification with both
classifiers in almost similar environments and study the effects of circuit
depths while comparing the results of both classifiers. We also use these
classification results with our own rule-based QA system and observe
significant performance improvement. Hence, this experiment has helped in
improving the quality of QA in general.
- Abstract(参考訳): 質問応答 (QA) は自然言語処理 (NLP) と人工知能 (AI) の分野において困難な課題であることが証明されている。
QAシステムのための完全なソリューションを開発し、またQAシステムの重要なサブモジュールを改善して、時間経過とともに全体的なパフォーマンスを改善するために、多くの試みがなされている。
質問はQAの最も重要な部分であり、質問を知ることは、答えとして数えられるものを知ることと等価である(Harrah in Philos Sci, 1961 [1])。
本研究では,量子機械学習(QML)を用いて質問をよりよく理解しようと試みている。
量子コンピューティング(QC)の特性は、古典的に難解なデータ処理を可能にした。
そこで本稿では,Python 用 Qiskit (Quantum Information Science ToolKIT) の量子ベース分類器アルゴリズム-量子支援ベクトルマシン (QSVM) と変分量子分類器 (VQC) を用いて,SelQA (Selection-based Question Answering) データセットから質問に対する質問分類を行った。
両分類器をほぼ類似した環境で分類し,回路深度の影響を両分類器の結果と比較しながら検討する。
また、これらの分類結果をルールベースのQAシステムで利用し、大幅な性能向上を観察する。
したがって、この実験はQAの質を全般的に向上させるのに役立っている。
関連論文リスト
- SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References [73.67707138779245]
SQuArE (Sentence-level QUestion AnsweRing Evaluation) という新しい評価指標を提案する。
文レベルの抽出(回答選択)と生成(GenQA)の両方のQAシステムでSQuArEを評価する。
論文 参考訳(メタデータ) (2023-09-21T16:51:30Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
我々は、ニューラルネットワークの量子対する最も有望な候補として登場した変分量子回路(VQC)に注目した。
有望な結果を示す一方で、バレン高原、重みの周期性、アーキテクチャの選択など、さまざまな問題のために、VQCのトレーニングは困難である。
本稿では,VQCの重みとアーキテクチャの両方を最適化するために,自然進化にインスパイアされた勾配のないアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-14T08:03:20Z) - Quantum Imitation Learning [74.15588381240795]
本稿では、量子優位性を利用してILを高速化する量子模倣学習(QIL)を提案する。
量子行動クローニング(Q-BC)と量子生成逆模倣学習(Q-GAIL)という2つのQILアルゴリズムを開発した。
実験結果から,Q-BCとQ-GAILの両者が,従来のものと同等の性能を達成できることが判明した。
論文 参考訳(メタデータ) (2023-04-04T12:47:35Z) - Quantum Annealing Learning Search Implementations [0.0]
本稿では、D-Wave量子アニール上でのQALS(Quantum Annealing Learning Search)とQALS(Quantum Annealing Learning Search)の2つの実装の詳細と試験について述べる。
論文 参考訳(メタデータ) (2022-12-21T15:57:16Z) - Improving Question Answering with Generation of NQ-like Questions [12.276281998447079]
QA ( Question Answering) システムは大量の注釈付きデータを必要とする。
本研究では,Quizbowl(QB)データセットの長いトリビア質問からNatural Questions(NQ)データセットにおいて,日々のコミュニケーションに似た短い質問を自動的に生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-12T21:36:20Z) - Learning capability of parametrized quantum circuits [2.51657752676152]
変分量子アルゴリズム(VQA)とそのパラメタライズド量子回路(PQC)による量子機械学習分野への応用は、ノイズの多い中間スケール量子コンピューティングデバイスを活用する主要な方法の1つであると考えられている。
本稿では、Schuldらによる研究に基づいて、学習能力の新たな尺度を用いて、PQCの一般的なアンス・アゼと比較する。
また,Beerらが導入した分散量子ニューラルネットワーク(dQNN)についても検討し,その学習能力を高めるために,dQNNのデータ再アップロード構造を提案する。
論文 参考訳(メタデータ) (2022-09-21T13:26:20Z) - Universal expressiveness of variational quantum classifiers and quantum
kernels for support vector machines [0.0]
量子カーネルを用いた変分量子分類器(VQC)とサポートベクトルマシン(QSVM)は、k-Forrelation問題に基づく分類問題を解くことができることを示す。
この結果から,任意のBQP問題に対して,VQCとQSVMを効率的に解ける特徴写像と量子カーネルが存在することが示唆された。
論文 参考訳(メタデータ) (2022-07-12T22:03:31Z) - Quantum circuit architecture search on a superconducting processor [56.04169357427682]
変分量子アルゴリズム(VQA)は、ファイナンス、機械学習、化学といった様々な分野において、証明可能な計算上の優位性を得るための強力な証拠を示している。
しかし、現代のVQAで利用されるアンザッツは、表現性と訓練性の間のトレードオフのバランスをとることができない。
8量子ビット超伝導量子プロセッサ上でVQAを強化するために,効率的な自動アンサッツ設計技術を適用した最初の実証実験を実証する。
論文 参考訳(メタデータ) (2022-01-04T01:53:42Z) - Improving the Question Answering Quality using Answer Candidate
Filtering based on Natural-Language Features [117.44028458220427]
本稿では,質問応答(QA)の品質をいかに改善できるかという課題に対処する。
私たちの主な貢献は、QAシステムが提供する間違った回答を識別できるアプローチです。
特に,提案手法は誤答の大部分を除去しつつ,その可能性を示した。
論文 参考訳(メタデータ) (2021-12-10T11:09:44Z) - Few-Shot Complex Knowledge Base Question Answering via Meta
Reinforcement Learning [55.08037694027792]
複雑な質問答え(CQA)は、知識ベース(KB)上の複雑な自然言語質問に答える。
従来のニューラルプログラム誘導(NPI)アプローチは、質問の種類が異なる場合、不均一なパフォーマンスを示す。
本稿では,CQAにおけるプログラム誘導のためのメタ強化学習手法を提案する。
論文 参考訳(メタデータ) (2020-10-29T18:34:55Z) - CQ-VQA: Visual Question Answering on Categorized Questions [3.0013352260516744]
本稿では,視覚的質問応答(VQA)の課題を解決するために,新しい2階層型・エンドツーエンドモデルであるCQ-VQAを提案する。
質問分類器(QC)と呼ばれる第1レベルのCQ-VQAは、潜在的な回答検索スペースを減らすために質問を分類する。
第2のレベルは、回答予測器(AP)と呼ばれ、各質問カテゴリに対応する一組の別個の分類器から構成される。
論文 参考訳(メタデータ) (2020-02-17T06:45:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。