Correlation-aware Deep Generative Model for Unsupervised Anomaly
Detection
- URL: http://arxiv.org/abs/2002.07349v3
- Date: Mon, 19 Oct 2020 04:04:58 GMT
- Title: Correlation-aware Deep Generative Model for Unsupervised Anomaly
Detection
- Authors: Haoyi Fan, Fengbin Zhang, Ruidong Wang, Liang Xi, Zuoyong Li
- Abstract summary: Unsupervised anomaly detection aims to identify anomalous samples from highly complex and unstructured data.
We propose a method of Correlation aware unsupervised Anomaly detection via Deep Gaussian Mixture Model (CADGMM)
Experiments on real-world datasets demonstrate the effectiveness of the proposed method.
- Score: 9.578395294627057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised anomaly detection aims to identify anomalous samples from highly
complex and unstructured data, which is pervasive in both fundamental research
and industrial applications. However, most existing methods neglect the complex
correlation among data samples, which is important for capturing normal
patterns from which the abnormal ones deviate. In this paper, we propose a
method of Correlation aware unsupervised Anomaly detection via Deep Gaussian
Mixture Model (CADGMM), which captures the complex correlation among data
points for high-quality low-dimensional representation learning. Specifically,
the relations among data samples are correlated firstly in forms of a graph
structure, in which, the node denotes the sample and the edge denotes the
correlation between two samples from the feature space. Then, a dual-encoder
that consists of a graph encoder and a feature encoder, is employed to encode
both the feature and correlation information of samples into the
low-dimensional latent space jointly, followed by a decoder for data
reconstruction. Finally, a separate estimation network as a Gaussian Mixture
Model is utilized to estimate the density of the learned latent vector, and the
anomalies can be detected by measuring the energy of the samples. Extensive
experiments on real-world datasets demonstrate the effectiveness of the
proposed method.
Related papers
- Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARC is a generalist GAD approach that enables a one-for-all'' GAD model to detect anomalies across various graph datasets on-the-fly.
equipped with in-context learning, ARC can directly extract dataset-specific patterns from the target dataset.
Extensive experiments on multiple benchmark datasets from various domains demonstrate the superior anomaly detection performance, efficiency, and generalizability of ARC.
arXiv Detail & Related papers (2024-05-27T02:42:33Z) - Generating and Reweighting Dense Contrastive Patterns for Unsupervised
Anomaly Detection [59.34318192698142]
We introduce a prior-less anomaly generation paradigm and develop an innovative unsupervised anomaly detection framework named GRAD.
PatchDiff effectively expose various types of anomaly patterns.
experiments on both MVTec AD and MVTec LOCO datasets also support the aforementioned observation.
arXiv Detail & Related papers (2023-12-26T07:08:06Z) - Gradient-Based Feature Learning under Structured Data [57.76552698981579]
In the anisotropic setting, the commonly used spherical gradient dynamics may fail to recover the true direction.
We show that appropriate weight normalization that is reminiscent of batch normalization can alleviate this issue.
In particular, under the spiked model with a suitably large spike, the sample complexity of gradient-based training can be made independent of the information exponent.
arXiv Detail & Related papers (2023-09-07T16:55:50Z) - Fascinating Supervisory Signals and Where to Find Them: Deep Anomaly
Detection with Scale Learning [11.245813423781415]
We devise novel data-driven supervision for data by introducing a characteristic -- scale -- as data labels.
Scales serve as labels attached to transformed representations, thus offering ample labeled data for neural network training.
This paper further proposes a scale learning-based anomaly detection method.
arXiv Detail & Related papers (2023-05-25T14:48:00Z) - Hyperbolic Self-supervised Contrastive Learning Based Network Anomaly
Detection [0.0]
Anomaly detection on the attributed network has recently received increasing attention in many research fields.
We propose an efficient anomaly detection framework using hyperbolic self-supervised contrastive learning.
arXiv Detail & Related papers (2022-09-12T07:08:34Z) - CSCAD: Correlation Structure-based Collective Anomaly Detection in
Complex System [11.739889613196619]
We propose a correlation structure-based collective anomaly detection model for high-dimensional anomaly detection problem in large systems.
Our framework utilize graph convolutional network combining a variational autoencoder to jointly exploit the feature space correlation and reconstruction deficiency of samples.
An anomaly discriminating network can then be trained using low anomalous degree samples as positive samples, and high anomalous degree samples as negative samples.
arXiv Detail & Related papers (2021-05-30T09:28:25Z) - Dual-encoder Bidirectional Generative Adversarial Networks for Anomaly
Detection [0.0]
We develop a dual-encoder in a bidirectional GAN architecture that is trained simultaneously with a generator and a discriminator network.
We show that our proposed method performs well in capturing the distribution of normal samples, thereby improving anomaly detection on GAN-based models.
arXiv Detail & Related papers (2020-12-22T05:05:33Z) - ESAD: End-to-end Deep Semi-supervised Anomaly Detection [85.81138474858197]
We propose a new objective function that measures the KL-divergence between normal and anomalous data.
The proposed method significantly outperforms several state-of-the-arts on multiple benchmark datasets.
arXiv Detail & Related papers (2020-12-09T08:16:35Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.