論文の概要: A Modified Perturbed Sampling Method for Local Interpretable
Model-agnostic Explanation
- arxiv url: http://arxiv.org/abs/2002.07434v1
- Date: Tue, 18 Feb 2020 09:03:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 18:57:48.794564
- Title: A Modified Perturbed Sampling Method for Local Interpretable
Model-agnostic Explanation
- Title(参考訳): 局所的解釈可能なモデル非依存記述のための修正摂動サンプリング法
- Authors: Sheng Shi, Xinfeng Zhang, Wei Fan
- Abstract要約: LIME(Local Interpretable Model-Agnostic Explanation)は、任意の分類器の予測を忠実に説明する手法である。
本稿では,LIME (MPS-LIME) のための改良型摂動サンプリング操作を提案する。
画像分類において、MPS-LIMEはスーパーピクセル画像を非方向グラフに変換する。
- 参考スコア(独自算出の注目度): 35.281127405430674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Explainability is a gateway between Artificial Intelligence and society as
the current popular deep learning models are generally weak in explaining the
reasoning process and prediction results. Local Interpretable Model-agnostic
Explanation (LIME) is a recent technique that explains the predictions of any
classifier faithfully by learning an interpretable model locally around the
prediction. However, the sampling operation in the standard implementation of
LIME is defective. Perturbed samples are generated from a uniform distribution,
ignoring the complicated correlation between features. This paper proposes a
novel Modified Perturbed Sampling operation for LIME (MPS-LIME), which is
formalized as the clique set construction problem. In image classification,
MPS-LIME converts the superpixel image into an undirected graph. Various
experiments show that the MPS-LIME explanation of the black-box model achieves
much better performance in terms of understandability, fidelity, and
efficiency.
- Abstract(参考訳): 現在の一般的なディープラーニングモデルは、推論プロセスと予測結果を説明する上では一般的に弱いため、説明可能性は人工知能と社会の間のゲートウェイである。
LIME(Local Interpretable Model-Agnostic Explanation)は、局所的に解釈可能なモデルを学ぶことによって、任意の分類器の予測を忠実に説明する手法である。
しかし、LIMEの標準実装におけるサンプリング操作は欠陥がある。
乱れたサンプルは一様分布から生成され、特徴間の複雑な相関は無視される。
本稿では,クランク集合構築問題として定式化された,新しい改良型パータブルサンプリング操作(mps-lime)を提案する。
画像分類において、MPS-LIMEはスーパーピクセル画像を非方向グラフに変換する。
様々な実験により,MPS-LIMEによるブラックボックスモデルの説明は,理解可能性,忠実度,効率の点で,はるかに優れた性能を発揮することが示された。
関連論文リスト
- Diffusion models for probabilistic programming [56.47577824219207]
拡散モデル変分推論(DMVI)は確率型プログラミング言語(PPL)における自動近似推論手法である
DMVIは実装が容易で、例えば正規化フローを用いた変分推論の欠点を伴わずに、PPLでヘイズルフリー推論が可能であり、基礎となるニューラルネットワークモデルに制約を課さない。
論文 参考訳(メタデータ) (2023-11-01T12:17:05Z) - CLIMAX: An exploration of Classifier-Based Contrastive Explanations [5.381004207943597]
我々は,ブラックボックスの分類を正当化する対照的な説明を提供する,ポストホックモデルXAI手法を提案する。
CLIMAXと呼ばれる手法は,局所的な分類法に基づく。
LIME, BayLIME, SLIMEなどのベースラインと比較して, 一貫性が向上することを示す。
論文 参考訳(メタデータ) (2023-07-02T22:52:58Z) - Efficient Propagation of Uncertainty via Reordering Monte Carlo Samples [0.7087237546722617]
不確実性伝播は、入力変数の不確実性に基づいてモデル出力の不確実性を決定する技術である。
本研究は,全ての試料が平均的に有用であるにもかかわらず,他の試料よりも有用であるとする仮説を考察する。
本稿では、MCサンプルを適応的に並べ替える手法を導入し、UPプロセスの計算コストの削減をもたらす方法を示す。
論文 参考訳(メタデータ) (2023-02-09T21:28:15Z) - Local Interpretable Model Agnostic Shap Explanations for machine
learning models [0.0]
局所解釈可能なモデル非依存型シェイプ説明法(LIMASE)を提案する。
提案手法は, LIMEパラダイムの下でシェープリー値を用いて, 局所的忠実かつ解釈可能な決定木モデルを用いて, シェープリー値を計算し, 視覚的に解釈可能な説明を行うことにより, 任意のモデルの予測を行う。
論文 参考訳(メタデータ) (2022-10-10T10:07:27Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
異なる因果発見は、データ生成プロセスを一連のモジュールに分解するために提案されている。
このようなモジュラニューラル因果モデルの一般化と適応性能について検討する。
我々の分析では、モジュラーニューラル因果モデルが、低データレギュレーションにおけるゼロおよび少数ショットの適応において、他のモデルよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-06-09T17:12:32Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Locally Interpretable Model Agnostic Explanations using Gaussian
Processes [2.9189409618561966]
LIME(Local Interpretable Model-Agnostic Explanations)は、単一インスタンスの予測を説明する一般的なテクニックである。
局所的解釈可能なモデルのガウス過程(GP)に基づくバリエーションを提案する。
提案手法は,LIMEに比べてはるかに少ないサンプルを用いて忠実な説明を生成可能であることを示す。
論文 参考訳(メタデータ) (2021-08-16T05:49:01Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - MeLIME: Meaningful Local Explanation for Machine Learning Models [2.819725769698229]
我々のアプローチであるMeLIMEは、異なるMLモデル上での他の手法と比較して、より意味のある説明を生成する。
MeLIMEはLIME法を一般化し、より柔軟な摂動サンプリングと異なる局所解釈可能なモデルの使用を可能にした。
論文 参考訳(メタデータ) (2020-09-12T16:06:58Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。