論文の概要: Locally Interpretable Model Agnostic Explanations using Gaussian
Processes
- arxiv url: http://arxiv.org/abs/2108.06907v1
- Date: Mon, 16 Aug 2021 05:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-17 14:53:48.074576
- Title: Locally Interpretable Model Agnostic Explanations using Gaussian
Processes
- Title(参考訳): ガウス過程を用いた局所解釈可能なモデル非依存的説明
- Authors: Aditya Saini, Ranjitha Prasad
- Abstract要約: LIME(Local Interpretable Model-Agnostic Explanations)は、単一インスタンスの予測を説明する一般的なテクニックである。
局所的解釈可能なモデルのガウス過程(GP)に基づくバリエーションを提案する。
提案手法は,LIMEに比べてはるかに少ないサンプルを用いて忠実な説明を生成可能であることを示す。
- 参考スコア(独自算出の注目度): 2.9189409618561966
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Owing to tremendous performance improvements in data-intensive domains,
machine learning (ML) has garnered immense interest in the research community.
However, these ML models turn out to be black boxes, which are tough to
interpret, resulting in a direct decrease in productivity. Local Interpretable
Model-Agnostic Explanations (LIME) is a popular technique for explaining the
prediction of a single instance. Although LIME is simple and versatile, it
suffers from instability in the generated explanations. In this paper, we
propose a Gaussian Process (GP) based variation of locally interpretable
models. We employ a smart sampling strategy based on the acquisition functions
in Bayesian optimization. Further, we employ the automatic relevance
determination based covariance function in GP, with separate length-scale
parameters for each feature, where the reciprocal of lengthscale parameters
serve as feature explanations. We illustrate the performance of the proposed
technique on two real-world datasets, and demonstrate the superior stability of
the proposed technique. Furthermore, we demonstrate that the proposed technique
is able to generate faithful explanations using much fewer samples as compared
to LIME.
- Abstract(参考訳): データ集約型ドメインの大幅なパフォーマンス向上により、機械学習(ML)は研究コミュニティに大きな関心を集めている。
しかし、これらのMLモデルはブラックボックスであることが判明し、解釈が難しいため、生産性は直接的に低下する。
LIME(Local Interpretable Model-Agnostic Explanations)は、単一インスタンスの予測を説明する一般的なテクニックである。
LIMEは単純で多用途であるが、生成された説明の不安定さに悩まされている。
本稿では,局所的解釈可能なモデルのガウス過程(GP)に基づくバリエーションを提案する。
我々はベイズ最適化における獲得関数に基づくスマートサンプリング戦略を採用する。
さらに,各特徴に対して異なる長大パラメータを持つGPにおける自己相関決定に基づく共分散関数を用いて,長大パラメータの相反が特徴説明として機能する。
2つの実世界のデータセットにおける提案手法の性能を示し,提案手法の安定性を実証する。
さらに,提案手法は,LIMEに比べてはるかに少ないサンプルを用いて忠実な説明を生成可能であることを示す。
関連論文リスト
- Polynomial Chaos Expanded Gaussian Process [2.287415292857564]
複雑で未知のプロセスでは、大域的モデルは最初実験空間全体にわたって生成される。
本研究では,グローバルな実験空間とローカルな実験空間の両方を効果的に表現するモデルの必要性に対処する。
論文 参考訳(メタデータ) (2024-05-02T07:11:05Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
低ランクマルコフ決定プロセスは、関数近似を持つRLに対して単純だが表現力のあるフレームワークを提供する。
既存のアルゴリズムは、(1)計算的に抽出可能であるか、または(2)制限的な統計的仮定に依存している。
提案手法は,低ランクMPPの探索のための最初の実証可能なサンプル効率アルゴリズムである。
論文 参考訳(メタデータ) (2023-07-08T15:41:48Z) - Optimizing Hyperparameters with Conformal Quantile Regression [7.316604052864345]
本稿では,観測ノイズについて最小限の仮定を行う等化量子レグレッションを活用することを提案する。
これは経験的ベンチマークでのHPO収束を早くすることを意味する。
論文 参考訳(メタデータ) (2023-05-05T15:33:39Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Smpling (AIS) は、深層生成モデルの難易度を推定するために使われる一般的なアルゴリズムである。
本稿では、フレキシブルな中間分布を持つパラメータAISプロセスを提案し、サンプリングに少ないステップを使用するようにブリッジング分布を最適化する。
我々は, 最適化AISの性能評価を行い, 深部生成モデルの限界推定を行い, 他の推定値と比較した。
論文 参考訳(メタデータ) (2022-09-27T07:58:25Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Surrogate modeling for Bayesian optimization beyond a single Gaussian
process [62.294228304646516]
本稿では,探索空間の活用と探索のバランスをとるための新しいベイズ代理モデルを提案する。
拡張性のある関数サンプリングを実現するため、GPモデル毎にランダムな特徴ベースのカーネル近似を利用する。
提案した EGP-TS を大域的最適に収束させるため,ベイズ的後悔の概念に基づいて解析を行う。
論文 参考訳(メタデータ) (2022-05-27T16:43:10Z) - Generalised Gaussian Process Latent Variable Models (GPLVM) with
Stochastic Variational Inference [9.468270453795409]
ミニバッチ学習が可能なBayesianVMモデルの2倍の定式化について検討する。
このフレームワークが、異なる潜在変数の定式化とどのように互換性を持つかを示し、モデルの組を比較する実験を行う。
我々は、膨大な量の欠落データの存在下でのトレーニングと、高忠実度再構築の実施を実証する。
論文 参考訳(メタデータ) (2022-02-25T21:21:51Z) - Gaussian Process Regression with Local Explanation [28.90948136731314]
本稿では,各サンプルの予測に寄与する特徴を明らかにするため,局所的な説明を伴うGPRを提案する。
提案モデルでは,各サンプルの予測と説明を,容易に解釈可能な局所線形モデルを用いて行う。
新しい試験サンプルでは, 対象変数と重みベクトルの値と不確かさを予測できる。
論文 参考訳(メタデータ) (2020-07-03T13:22:24Z) - A Modified Perturbed Sampling Method for Local Interpretable
Model-agnostic Explanation [35.281127405430674]
LIME(Local Interpretable Model-Agnostic Explanation)は、任意の分類器の予測を忠実に説明する手法である。
本稿では,LIME (MPS-LIME) のための改良型摂動サンプリング操作を提案する。
画像分類において、MPS-LIMEはスーパーピクセル画像を非方向グラフに変換する。
論文 参考訳(メタデータ) (2020-02-18T09:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。