High-contrast ZZ interaction using superconducting qubits with opposite-sign anharmonicity
- URL: http://arxiv.org/abs/2002.07560v5
- Date: Wed, 11 Sep 2024 12:04:46 GMT
- Title: High-contrast ZZ interaction using superconducting qubits with opposite-sign anharmonicity
- Authors: Peng Zhao, Peng Xu, Dong Lan, Ji Chu, Xinsheng Tan, Haifeng Yu, Yang Yu,
- Abstract summary: We introduce a superconducting architecture using qubits with opposite-sign anharmonicity, a transmon qubit and a C-shunt flux qubit.
We can control the interaction with a high on/off ratio to implement two-qubit CZ gates, or suppress it during two-qubit gate operation using XY interaction.
- Score: 15.172882153788267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For building a scalable quantum processor with superconducting qubits, ZZ interaction is of great concern because its residual has a crucial impact to two-qubit gate fidelity. Two-qubit gates with fidelity meeting the criterion of fault-tolerant quantum computationhave been demonstrated using ZZ interaction. However, as the performance of quantum processors improves, the residual static-ZZ can become a performance-limiting factor for quantum gate operation and quantum error correction. Here, we introduce a superconducting architecture using qubits with opposite-sign anharmonicity, a transmon qubit and a C-shunt flux qubit, to address this issue. We theoretically demonstrate that by coupling the two types of qubits, the high-contrast ZZ interaction can be realized. Thus, we can control the interaction with a high on/off ratio to implement two-qubit CZ gates, or suppress it during two-qubit gate operation using XY interaction (e.g., an iSWAP gate). The proposed architecture can also be scaled up to multi-qubit cases. In a fixed coupled system, ZZ crosstalk related to neighboring spectator qubits could also be heavily suppressed.
Related papers
- Modeling and Suppressing Unwanted Parasitic Interactions in Superconducting Circuits [0.8780132973107815]
Superconducting qubits are among the most promising candidates for building quantum computers.
This thesis addresses the parasitic interaction between coupled qubits in two- and three-qubit circuits.
arXiv Detail & Related papers (2024-07-11T09:07:45Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Scalable Method for Eliminating Residual $ZZ$ Interaction between
Superconducting Qubits [14.178204625914194]
We show a practically approach for complete cancellation of residual $ZZ$ interaction between fixed-frequency transmon qubits.
We verify the cancellation performance by measuring vanishing two-qubit entangling phases and $ZZ$ correlations.
Our method allows independent addressability of each qubit-qubit connection, and is applicable to both nontunable and tunable couplers.
arXiv Detail & Related papers (2021-11-26T02:04:49Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
We study the impact of quantum crosstalk on simultaneous gate operations in a qubit architecture.
Our analysis shows that for microwave-driven single-qubit gates, the dressing from the qubit-qubit coupling can cause non-negligible cross-driving errors.
arXiv Detail & Related papers (2021-10-25T01:21:04Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Suppression of static ZZ interaction in an all-transmon quantum processor [14.546367123004165]
We show that an feasible parameter region, where the ZZ interaction is heavily suppressed, can be found for all-transmon systems.
Two-qubit gates, such as cross-resonance gate or iSWAP gate, can be realized without the detrimental effect from static ZZ interaction.
arXiv Detail & Related papers (2020-11-08T13:11:08Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.