Suppression of static ZZ interaction in an all-transmon quantum processor
- URL: http://arxiv.org/abs/2011.03976v3
- Date: Wed, 11 Sep 2024 11:57:40 GMT
- Title: Suppression of static ZZ interaction in an all-transmon quantum processor
- Authors: Peng Zhao, Dong Lan, Peng Xu, Guangming Xue, Mace Blank, Xinsheng Tan, Haifeng Yu, Yang Yu,
- Abstract summary: We show that an feasible parameter region, where the ZZ interaction is heavily suppressed, can be found for all-transmon systems.
Two-qubit gates, such as cross-resonance gate or iSWAP gate, can be realized without the detrimental effect from static ZZ interaction.
- Score: 14.546367123004165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The superconducting transmon qubit is currently a leading qubit modality for quantum computing, but gate performance in quantum processor with transmons is often insufficient to support running complex algorithms for practical applications. It is thus highly desirable to further improve gate performance. Due to the weak anharmonicity of transmon, a static ZZ interaction between coupled transmons commonly exists, undermining the gate performance, and in long term, it can become performance limiting. Here we theoretically explore a previously unexplored parameter region in an all-transmon system to address this issue. We show that an feasible parameter region, where the ZZ interaction is heavily suppressed while leaving XY interaction with an adequate strength to implement two-qubit gates, can be found for all-transmon systems. Thus, two-qubit gates, such as cross-resonance gate or iSWAP gate, can be realized without the detrimental effect from static ZZ interaction. To illustrate this, we demonstrate that an iSWAP gate with fast gate speed and dramatically lower conditional phase error can be achieved. Scaling up to large-scale transmon quantum processor, especially the cases with fixed coupling, addressing error, idling error, and crosstalk that arises from static ZZ interaction could also be strongly suppressed.
Related papers
- Fast ZZ-Free Entangling Gates for Superconducting Qubits Assisted by a
Driven Resonator [42.152052307404]
We propose a simple scheme to cancel stray interactions between qubits.
We numerically show that such a scheme can enable short and high-fidelity entangling gates.
Our architecture is not only ZZ free but also contains no extra noisy components.
arXiv Detail & Related papers (2023-11-02T15:42:02Z) - ZZ-Interaction-Free Single-Qubit-Gate Optimization in Superconducting
Qubits [0.17999333451993949]
We propose and experimentally demonstrate ZZ-interaction-free single-qubit-gate operations on a superconducting transmon qubit.
The robustness of the optimized gate spans a few MHz, which is sufficient for suppressing the adverse effects of the ZZ interaction.
arXiv Detail & Related papers (2023-09-25T07:49:27Z) - Two qubits in one transmon -- QEC without ancilla hardware [68.8204255655161]
We show that it is theoretically possible to use higher energy levels for storing and controlling two qubits within a superconducting transmon.
The additional qubits could be used in algorithms which need many short-living qubits in error correction or by embedding effecitve higher connectivity in qubit networks.
arXiv Detail & Related papers (2023-02-28T16:18:00Z) - Universal qudit gate synthesis for transmons [44.22241766275732]
We design a superconducting qudit-based quantum processor.
We propose a universal gate set featuring a two-qudit cross-resonance entangling gate.
We numerically demonstrate the synthesis of $rm SU(16)$ gates for noisy quantum hardware.
arXiv Detail & Related papers (2022-12-08T18:59:53Z) - Microwave-activated gates between a fluxonium and a transmon qubit [59.95978973946985]
We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit.
For a medium-frequency fluxonium qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of the fluxonium.
A fast microwave CPHASE gate can be implemented using the higher levels of the fluxonium.
arXiv Detail & Related papers (2022-06-13T14:34:11Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Quantum crosstalk analysis for simultaneous gate operations on
superconducting qubits [12.776712619117092]
We study the impact of quantum crosstalk on simultaneous gate operations in a qubit architecture.
Our analysis shows that for microwave-driven single-qubit gates, the dressing from the qubit-qubit coupling can cause non-negligible cross-driving errors.
arXiv Detail & Related papers (2021-10-25T01:21:04Z) - Accurate methods for the analysis of strong-drive effects in parametric
gates [94.70553167084388]
We show how to efficiently extract gate parameters using exact numerics and a perturbative analytical approach.
We identify optimal regimes of operation for different types of gates including $i$SWAP, controlled-Z, and CNOT.
arXiv Detail & Related papers (2021-07-06T02:02:54Z) - Arbitrary controlled-phase gate on fluxonium qubits using differential
ac-Stark shifts [1.8568045743509223]
We show a resource-efficient control over the interaction of strongly-anharmonic fluxonium qubits.
Our result demonstrates the advantages of strongly-anharmonic circuits over transmons in designing the next generation of quantum processors.
arXiv Detail & Related papers (2021-03-08T00:02:56Z) - High-contrast ZZ interaction using superconducting qubits with opposite-sign anharmonicity [15.172882153788267]
We introduce a superconducting architecture using qubits with opposite-sign anharmonicity, a transmon qubit and a C-shunt flux qubit.
We can control the interaction with a high on/off ratio to implement two-qubit CZ gates, or suppress it during two-qubit gate operation using XY interaction.
arXiv Detail & Related papers (2020-02-18T13:53:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.