論文の概要: Conditional Adversarial Camera Model Anonymization
- arxiv url: http://arxiv.org/abs/2002.07798v3
- Date: Thu, 3 Dec 2020 13:42:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 20:37:37.389000
- Title: Conditional Adversarial Camera Model Anonymization
- Title(参考訳): 条件付き逆カメラモデル匿名化
- Authors: Jerone T. A. Andrews, Yidan Zhang, Lewis D. Griffin
- Abstract要約: 特定の写真画像(モデル属性)をキャプチャするために使用されたカメラのモデルは、通常、高周波モデル固有のアーティファクトから推測される。
このような変換を学習するための条件付き対位法を提案する。
- 参考スコア(独自算出の注目度): 11.98237992824422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The model of camera that was used to capture a particular photographic image
(model attribution) is typically inferred from high-frequency model-specific
artifacts present within the image. Model anonymization is the process of
transforming these artifacts such that the apparent capture model is changed.
We propose a conditional adversarial approach for learning such
transformations. In contrast to previous works, we cast model anonymization as
the process of transforming both high and low spatial frequency information. We
augment the objective with the loss from a pre-trained dual-stream model
attribution classifier, which constrains the generative network to transform
the full range of artifacts. Quantitative comparisons demonstrate the efficacy
of our framework in a restrictive non-interactive black-box setting.
- Abstract(参考訳): 特定の写真画像(モデル属性)をキャプチャするために使用されたカメラのモデルは、通常、画像内に存在する高周波モデル固有のアーティファクトから推測される。
モデル匿名化は、これらのアーティファクトを、明らかなキャプチャモデルを変更するように変換するプロセスである。
このような変換を学習するための条件付き逆法を提案する。
先行研究とは対照的に,高空間周波数情報と低空間周波数情報の両方を変換するプロセスとしてモデル匿名化を行った。
学習済みの2ストリームモデル属性分類器の損失により目的を増強し,生成ネットワークを制約し,人工物の全範囲を変換する。
定量的比較は,非対話的ブラックボックス設定における枠組みの有効性を示す。
関連論文リスト
- Oscillation Inversion: Understand the structure of Large Flow Model through the Lens of Inversion Method [60.88467353578118]
実世界のイメージを逆転させる固定点インスパイアされた反復的アプローチは収束を達成せず、異なるクラスタ間で振動することを示す。
本稿では,画像強調,ストロークベースのリカラー化,および視覚的プロンプト誘導画像編集を容易にする,シンプルで高速な分布転送手法を提案する。
論文 参考訳(メタデータ) (2024-11-17T17:45:37Z) - Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
論文 参考訳(メタデータ) (2023-06-02T20:09:57Z) - DOLCE: A Model-Based Probabilistic Diffusion Framework for Limited-Angle
CT Reconstruction [42.028139152832466]
Limited-Angle Computed Tomography (LACT) は、セキュリティから医療まで様々な用途で使用される非破壊的評価技術である。
DOLCEは、条件付き拡散モデルを画像として用いた、LACTのための新しいディープモデルベースのフレームワークである。
論文 参考訳(メタデータ) (2022-11-22T15:30:38Z) - DiffGAR: Model-Agnostic Restoration from Generative Artifacts Using
Image-to-Image Diffusion Models [46.46919194633776]
この作業は、多様な生成モデルのためのプラグイン後処理モジュールの開発を目的としている。
従来の劣化パターンとは異なり、生成アーティファクトは非線形であり、変換関数は非常に複雑である。
論文 参考訳(メタデータ) (2022-10-16T16:08:47Z) - Frequency Domain Model Augmentation for Adversarial Attack [91.36850162147678]
ブラックボックス攻撃の場合、代用モデルと被害者モデルの間のギャップは通常大きい。
そこで本研究では,通常の訓練モデルと防衛モデルの両方に対して,より伝達可能な対角線モデルを構築するための新しいスペクトルシミュレーション攻撃を提案する。
論文 参考訳(メタデータ) (2022-07-12T08:26:21Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
各トレーニングイメージのマルチスケールパッチ分布をキャプチャする階層的生成モデルを開発した。
この異常スコアは、スケール及び画像領域にわたる正しい変換のパッチベースの投票を集約して得られる。
論文 参考訳(メタデータ) (2021-04-29T17:49:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。