論文の概要: A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous
Algorithmic Scores
- arxiv url: http://arxiv.org/abs/2002.08035v2
- Date: Thu, 20 Feb 2020 06:13:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-03 05:05:42.630975
- Title: A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous
Algorithmic Scores
- Title(参考訳): human-in-the-loopの1例:誤ったアルゴリズム的スコアの存在下での決定
- Authors: Maria De-Arteaga, Riccardo Fogliato, Alexandra Chouldechova
- Abstract要約: 本研究では,児童虐待のホットラインスクリーニング決定を支援するアルゴリズムツールの採用について検討した。
まず、ツールがデプロイされたときに人間が行動を変えることを示します。
表示されたスコアが誤ったリスク推定である場合、人間はマシンの推奨に従わない可能性が低いことを示す。
- 参考スコア(独自算出の注目度): 85.12096045419686
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increased use of algorithmic predictions in sensitive domains has been
accompanied by both enthusiasm and concern. To understand the opportunities and
risks of these technologies, it is key to study how experts alter their
decisions when using such tools. In this paper, we study the adoption of an
algorithmic tool used to assist child maltreatment hotline screening decisions.
We focus on the question: Are humans capable of identifying cases in which the
machine is wrong, and of overriding those recommendations? We first show that
humans do alter their behavior when the tool is deployed. Then, we show that
humans are less likely to adhere to the machine's recommendation when the score
displayed is an incorrect estimate of risk, even when overriding the
recommendation requires supervisory approval. These results highlight the risks
of full automation and the importance of designing decision pipelines that
provide humans with autonomy.
- Abstract(参考訳): 敏感な領域におけるアルゴリズム予測の利用の増加には熱意と懸念の両方が伴っている。
これらの技術の機会とリスクを理解するためには、そのようなツールを使用する際に専門家がどのように意思決定を変えるかを研究することが重要だ。
本稿では,児童虐待のホットラインスクリーニング決定を支援するアルゴリズムツールの採用について検討する。
人間は、マシンが間違っているケースを特定し、それらの推奨事項をオーバーライドする能力がありますか?
まず、ツールがデプロイされたときに人間が行動を変えることを示します。
そして,提示されたスコアが不正確なリスク推定である場合,推奨を過小評価した場合においても,人間が機械の推奨に固執する確率が低いことを示す。
これらの結果は、完全な自動化のリスクと、人間の自律性を提供する意思決定パイプラインの設計の重要性を強調している。
関連論文リスト
- Designing Algorithmic Recommendations to Achieve Human-AI Complementarity [2.4247752614854203]
人間の意思決定を支援するレコメンデーションアルゴリズムの設計を形式化する。
我々は、潜在的なアウトカムフレームワークを使用して、ヒトの意思決定者による二元的治療選択に対するレコメンデーションの効果をモデル化する。
機械学習で実装可能な最小限の推奨アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-05-02T17:15:30Z) - Does AI help humans make better decisions? A statistical evaluation framework for experimental and observational studies [0.43981305860983716]
我々は、人間とAI、AIの3つの代替意思決定システムのパフォーマンスを比較する方法を示す。
リスクアセスメントの勧告は、現金保釈を課す裁判官の決定の分類精度を向上しないことがわかった。
論文 参考訳(メタデータ) (2024-03-18T01:04:52Z) - Online Decision Mediation [72.80902932543474]
意思決定支援アシスタントを学習し、(好奇心)専門家の行動と(不完全)人間の行動の仲介役として機能することを検討する。
臨床診断では、完全に自律的な機械行動は倫理的余裕を超えることが多い。
論文 参考訳(メタデータ) (2023-10-28T05:59:43Z) - Conformal Decision Theory: Safe Autonomous Decisions from Imperfect Predictions [80.34972679938483]
不完全な機械学習予測にも拘わらず、安全な自律的意思決定を実現するためのフレームワークであるコンフォーマル決定理論を導入する。
私たちのアルゴリズムが生み出す決定は、リスクが低いという証明可能な統計的保証があるという意味では安全です。
実験は、人間のまわりのロボットの動き計画、自動株式取引、ロボット製造において、我々のアプローチの有用性を実証する。
論文 参考訳(メタデータ) (2023-10-09T17:59:30Z) - Auditing for Human Expertise [12.967730957018688]
我々は、この問題を自然仮説テストとして適用できる統計的枠組みを開発する。
本稿では,専門家の予測が興味ある結果から統計的に独立しているかどうかを判定する簡単な手順を提案する。
我々のテストの拒絶は、人間の専門家が利用可能なデータに基づいてトレーニングされたアルゴリズムに価値を付加する可能性を示唆している。
論文 参考訳(メタデータ) (2023-06-02T16:15:24Z) - Algorithmic Assistance with Recommendation-Dependent Preferences [2.864550757598007]
選択に影響を及ぼすアルゴリズムレコメンデーションの効果と設計について考察する。
我々は、レコメンデーションに依存した選好が、意思決定者がレコメンデーションに過度に反応する非効率性を生み出すことを示す。
論文 参考訳(メタデータ) (2022-08-16T09:24:47Z) - Doubting AI Predictions: Influence-Driven Second Opinion Recommendation [92.30805227803688]
我々は,補完的な意見を提供する可能性のある専門家を識別する,共通の組織的実践に基づいて,人間とAIのコラボレーションを強化する方法を提案する。
提案手法は、一部の専門家がアルゴリズムによる評価に異を唱えるかどうかを特定することによって、生産的な不一致を活用することを目的としている。
論文 参考訳(メタデータ) (2022-04-29T20:35:07Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - On the Fairness of Machine-Assisted Human Decisions [3.4069627091757178]
偏りのある人間の意思決定者を含めることで、アルゴリズムの構造と結果の判断の質との間の共通関係を逆転させることができることを示す。
実験室実験では,性別別情報による予測が,意思決定における平均的な性別格差を減少させることを示す。
論文 参考訳(メタデータ) (2021-10-28T17:24:45Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。