論文の概要: Designing Algorithmic Recommendations to Achieve Human-AI Complementarity
- arxiv url: http://arxiv.org/abs/2405.01484v2
- Date: Wed, 30 Oct 2024 03:56:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 14:24:15.443483
- Title: Designing Algorithmic Recommendations to Achieve Human-AI Complementarity
- Title(参考訳): 人間とAIの相補性を達成するためのアルゴリズムレコメンデーションの設計
- Authors: Bryce McLaughlin, Jann Spiess,
- Abstract要約: 人間の意思決定を支援するレコメンデーションアルゴリズムの設計を形式化する。
我々は、潜在的なアウトカムフレームワークを使用して、ヒトの意思決定者による二元的治療選択に対するレコメンデーションの効果をモデル化する。
機械学習で実装可能な最小限の推奨アルゴリズムを導出する。
- 参考スコア(独自算出の注目度): 2.4247752614854203
- License:
- Abstract: Algorithms frequently assist, rather than replace, human decision-makers. However, the design and analysis of algorithms often focus on predicting outcomes and do not explicitly model their effect on human decisions. This discrepancy between the design and role of algorithmic assistants becomes particularly concerning in light of empirical evidence that suggests that algorithmic assistants again and again fail to improve human decisions. In this article, we formalize the design of recommendation algorithms that assist human decision-makers without making restrictive ex-ante assumptions about how recommendations affect decisions. We formulate an algorithmic-design problem that leverages the potential-outcomes framework from causal inference to model the effect of recommendations on a human decision-maker's binary treatment choice. Within this model, we introduce a monotonicity assumption that leads to an intuitive classification of human responses to the algorithm. Under this assumption, we can express the human's response to algorithmic recommendations in terms of their compliance with the algorithm and the active decision they would take if the algorithm sends no recommendation. We showcase the utility of our framework using an online experiment that simulates a hiring task. We argue that our approach can make sense of the relative performance of different recommendation algorithms in the experiment and can help design solutions that realize human-AI complementarity. Finally, we leverage our approach to derive minimax optimal recommendation algorithms that can be implemented with machine learning using limited training data.
- Abstract(参考訳): アルゴリズムは人間の意思決定を置き換えるのではなく、しばしば助ける。
しかしながら、アルゴリズムの設計と分析は、しばしば結果を予測することに集中し、人的決定に対するその影響を明示的にモデル化しない。
このアルゴリズムアシスタントの設計と役割の相違は、アルゴリズムアシスタントが人的判断を改善するのに何度も失敗することを示す経験的な証拠から、特に懸念される。
本稿では,人間の意思決定者を支援するレコメンデーションアルゴリズムの設計を,レコメンデーションが意思決定にどう影響するかという限定的な前提を課すことなく形式化する。
本稿では、因果推論から潜在的アウトカムの枠組みを活用するアルゴリズム設計問題を定式化し、人間の意思決定者による二項処理選択に対するレコメンデーションの効果をモデル化する。
本モデルでは,アルゴリズムに対する人間の反応を直感的に分類する単調性仮定を導入する。
この仮定では、アルゴリズムへのコンプライアンスと、アルゴリズムがレコメンデーションを送信しない場合のアクティブな判断の観点から、アルゴリズムレコメンデーションに対する人間の反応を表現できる。
我々は,採用タスクをシミュレートするオンライン実験を用いて,我々のフレームワークの有用性を実証する。
提案手法は,実験において,異なる推薦アルゴリズムの相対的な性能を理解でき,人間とAIの相補性を実現するソリューションの設計に役立てることができると論じる。
最後に、我々のアプローチを利用して、限られたトレーニングデータを用いて機械学習で実装できる最小限の推奨アルゴリズムを導出する。
関連論文リスト
- Integrating Expert Judgment and Algorithmic Decision Making: An Indistinguishability Framework [12.967730957018688]
予測と意思決定タスクにおける人間とAIの協調のための新しい枠組みを導入する。
我々の手法は人間の判断を利用して、アルゴリズム的に区別できない入力を区別する。
論文 参考訳(メタデータ) (2024-10-11T13:03:53Z) - Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Human Expertise in Algorithmic Prediction [16.104330706951004]
アルゴリズムの予測に人間の専門知識を取り入れるための新しい枠組みを導入する。
我々のアプローチは、人間の判断を利用して、アルゴリズム的に区別できない入力を区別する。
論文 参考訳(メタデータ) (2024-02-01T17:23:54Z) - Learning When to Advise Human Decision Makers [12.47847261193524]
本稿では,アルゴリズムがユーザと双方向に対話するAIシステムの設計を提案する。
大規模な実験の結果,私たちのアドバイスアプローチは,必要な時にアドバイスを提供することができることがわかった。
論文 参考訳(メタデータ) (2022-09-27T17:52:13Z) - Algorithmic Assistance with Recommendation-Dependent Preferences [2.864550757598007]
選択に影響を及ぼすアルゴリズムレコメンデーションの効果と設計について考察する。
我々は、レコメンデーションに依存した選好が、意思決定者がレコメンデーションに過度に反応する非効率性を生み出すことを示す。
論文 参考訳(メタデータ) (2022-08-16T09:24:47Z) - Doubting AI Predictions: Influence-Driven Second Opinion Recommendation [92.30805227803688]
我々は,補完的な意見を提供する可能性のある専門家を識別する,共通の組織的実践に基づいて,人間とAIのコラボレーションを強化する方法を提案する。
提案手法は、一部の専門家がアルゴリズムによる評価に異を唱えるかどうかを特定することによって、生産的な不一致を活用することを目的としている。
論文 参考訳(メタデータ) (2022-04-29T20:35:07Z) - Improving Human Sequential Decision-Making with Reinforcement Learning [29.334511328067777]
トレースデータから"ベストプラクティス"を抽出できる新しい機械学習アルゴリズムを設計する。
我々のアルゴリズムは、労働者の行動と最適な政策によって取られた行動のギャップを最もうまく埋めるヒントを選択する。
実験の結果,提案アルゴリズムが生成したチップは人体の性能を著しく向上させることができることがわかった。
論文 参考訳(メタデータ) (2021-08-19T02:57:58Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - Decision-Making Algorithms for Learning and Adaptation with Application
to COVID-19 Data [46.71828464689144]
本研究は適応と学習のための新しい意思決定アルゴリズムの開発に焦点を当てている。
重要な観察は、推定と決定の問題は構造的に異なるため、前者で成功したアルゴリズムは決定の問題を調整してもうまく機能しないということである。
論文 参考訳(メタデータ) (2020-12-14T18:24:45Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
本稿では,クラスタリングアルゴリズムのロバスト性をテストするために,ブラックボックス対逆攻撃法を提案する。
我々の攻撃は、SVM、ランダムフォレスト、ニューラルネットワークなどの教師付きアルゴリズムに対しても転送可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T18:19:31Z) - A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous
Algorithmic Scores [85.12096045419686]
本研究では,児童虐待のホットラインスクリーニング決定を支援するアルゴリズムツールの採用について検討した。
まず、ツールがデプロイされたときに人間が行動を変えることを示します。
表示されたスコアが誤ったリスク推定である場合、人間はマシンの推奨に従わない可能性が低いことを示す。
論文 参考訳(メタデータ) (2020-02-19T07:27:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。