論文の概要: Doubting AI Predictions: Influence-Driven Second Opinion Recommendation
- arxiv url: http://arxiv.org/abs/2205.00072v1
- Date: Fri, 29 Apr 2022 20:35:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-05 10:02:37.808545
- Title: Doubting AI Predictions: Influence-Driven Second Opinion Recommendation
- Title(参考訳): AI予測の倍増 - 影響駆動の第2のオピニオン推奨
- Authors: Maria De-Arteaga, Alexandra Chouldechova, Artur Dubrawski
- Abstract要約: 我々は,補完的な意見を提供する可能性のある専門家を識別する,共通の組織的実践に基づいて,人間とAIのコラボレーションを強化する方法を提案する。
提案手法は、一部の専門家がアルゴリズムによる評価に異を唱えるかどうかを特定することによって、生産的な不一致を活用することを目的としている。
- 参考スコア(独自算出の注目度): 92.30805227803688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Effective human-AI collaboration requires a system design that provides
humans with meaningful ways to make sense of and critically evaluate
algorithmic recommendations. In this paper, we propose a way to augment
human-AI collaboration by building on a common organizational practice:
identifying experts who are likely to provide complementary opinions. When
machine learning algorithms are trained to predict human-generated assessments,
experts' rich multitude of perspectives is frequently lost in monolithic
algorithmic recommendations. The proposed approach aims to leverage productive
disagreement by (1) identifying whether some experts are likely to disagree
with an algorithmic assessment and, if so, (2) recommend an expert to request a
second opinion from.
- Abstract(参考訳): 効果的な人間とAIのコラボレーションには、人間にアルゴリズムレコメンデーションを理解し、批判的に評価する意味のある方法を提供するシステム設計が必要である。
本稿では,補完的な意見を提供する可能性のある専門家を識別する,共通の組織的実践に基づく人間とAIのコラボレーションを強化する手法を提案する。
人間の生成した評価を予測するために機械学習アルゴリズムを訓練する場合、専門家の豊富な視点がモノリシックなアルゴリズムの推奨で失われることが多い。
提案手法は,(1)一部の専門家がアルゴリズム的評価に異を唱える可能性があり,(2)専門家に第2の意見を求めるよう勧めることによって,生産的不一致を活用することを目的としている。
関連論文リスト
- Integrating Expert Judgment and Algorithmic Decision Making: An Indistinguishability Framework [12.967730957018688]
予測と意思決定タスクにおける人間とAIの協調のための新しい枠組みを導入する。
我々の手法は人間の判断を利用して、アルゴリズム的に区別できない入力を区別する。
論文 参考訳(メタデータ) (2024-10-11T13:03:53Z) - Designing Algorithmic Recommendations to Achieve Human-AI Complementarity [2.4247752614854203]
人間の意思決定を支援するレコメンデーションアルゴリズムの設計を形式化する。
我々は、潜在的なアウトカムフレームワークを使用して、ヒトの意思決定者による二元的治療選択に対するレコメンデーションの効果をモデル化する。
機械学習で実装可能な最小限の推奨アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-05-02T17:15:30Z) - Human Expertise in Algorithmic Prediction [16.104330706951004]
アルゴリズムの予測に人間の専門知識を取り入れるための新しい枠組みを導入する。
我々のアプローチは、人間の判断を利用して、アルゴリズム的に区別できない入力を区別する。
論文 参考訳(メタデータ) (2024-02-01T17:23:54Z) - Learning to Make Adherence-Aware Advice [8.419688203654948]
本稿では,人間の従順性を考慮した逐次意思決定モデルを提案する。
最適なアドバイスポリシーを学習し、重要なタイムスタンプでのみアドバイスを行う学習アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-10-01T23:15:55Z) - BO-Muse: A human expert and AI teaming framework for accelerated
experimental design [58.61002520273518]
我々のアルゴリズムは、人間の専門家が実験プロセスでリードすることを可能にする。
我々のアルゴリズムは、AIや人間よりも高速に、サブ線形に収束することを示す。
論文 参考訳(メタデータ) (2023-03-03T02:56:05Z) - Learning When to Advise Human Decision Makers [12.47847261193524]
本稿では,アルゴリズムがユーザと双方向に対話するAIシステムの設計を提案する。
大規模な実験の結果,私たちのアドバイスアプローチは,必要な時にアドバイスを提供することができることがわかった。
論文 参考訳(メタデータ) (2022-09-27T17:52:13Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Human-Algorithm Collaboration: Achieving Complementarity and Avoiding
Unfairness [92.26039686430204]
慎重に設計されたシステムであっても、補完的な性能はあり得ないことを示す。
まず,簡単な人間アルゴリズムをモデル化するための理論的枠組みを提案する。
次に、このモデルを用いて相補性が不可能な条件を証明する。
論文 参考訳(メタデータ) (2022-02-17T18:44:41Z) - Deciding Fast and Slow: The Role of Cognitive Biases in AI-assisted
Decision-making [46.625616262738404]
我々は、認知科学の分野からの知識を用いて、人間とAIの協調的な意思決定設定における認知バイアスを考慮します。
私たちは、人間とAIのコラボレーションでよく見られるバイアスであるバイアスのアンカーに特に焦点を当てています。
論文 参考訳(メタデータ) (2020-10-15T22:25:41Z) - A Case for Humans-in-the-Loop: Decisions in the Presence of Erroneous
Algorithmic Scores [85.12096045419686]
本研究では,児童虐待のホットラインスクリーニング決定を支援するアルゴリズムツールの採用について検討した。
まず、ツールがデプロイされたときに人間が行動を変えることを示します。
表示されたスコアが誤ったリスク推定である場合、人間はマシンの推奨に従わない可能性が低いことを示す。
論文 参考訳(メタデータ) (2020-02-19T07:27:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。