論文の概要: Propose, Test, Release: Differentially private estimation with high
probability
- arxiv url: http://arxiv.org/abs/2002.08774v1
- Date: Wed, 19 Feb 2020 01:29:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 13:53:26.398374
- Title: Propose, Test, Release: Differentially private estimation with high
probability
- Title(参考訳): Propose, Test, Release: 確率の高い差分プライベートな見積もり
- Authors: Victor-Emmanuel Brunel and Marco Avella-Medina
- Abstract要約: 我々はPTR機構の新たな一般バージョンを導入し、微分プライベートな推定器に対して高い確率誤差境界を導出する。
我々のアルゴリズムは、データ上の有界性仮定なしで中央値と平均値の差分プライベートな推定を行うための最初の統計的保証を提供する。
- 参考スコア(独自算出の注目度): 9.25177374431812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive concentration inequalities for differentially private median and
mean estimators building on the "Propose, Test, Release" (PTR) mechanism
introduced by Dwork and Lei (2009). We introduce a new general version of the
PTR mechanism that allows us to derive high probability error bounds for
differentially private estimators. Our algorithms provide the first statistical
guarantees for differentially private estimation of the median and mean without
any boundedness assumptions on the data, and without assuming that the target
population parameter lies in some known bounded interval. Our procedures do not
rely on any truncation of the data and provide the first sub-Gaussian high
probability bounds for differentially private median and mean estimation, for
possibly heavy tailed random variables.
- Abstract(参考訳): Dwork と Lei (2009) が導入した "Propose, Test, Release" (PTR) メカニズムに基づいて, 差分プライベート中央値と平均推定値の濃度不等式を導出した。
我々はPTR機構の新たな一般バージョンを導入し、微分プライベートな推定器に対して高い確率誤差境界を導出する。
我々のアルゴリズムは、データに有界性を仮定することなく、対象の集団パラメータが既知の有界区間にあると仮定せずに、中央値と平均値の差分プライベートな推定を行うための最初の統計的保証を提供する。
我々の手順はデータの切り離しに頼らず、偏微分プライベートな中央値と平均推定値に対する最初の準ガウス高確率境界を重み付き確率変数に対して提供する。
関連論文リスト
- Stratified Prediction-Powered Inference for Hybrid Language Model Evaluation [62.2436697657307]
予測駆動推論(英: Prediction-powered Inference, PPI)は、人間ラベル付き限られたデータに基づいて統計的推定を改善する手法である。
我々はStratPPI(Stratified Prediction-Powered Inference)という手法を提案する。
単純なデータ階層化戦略を用いることで,基礎的なPPI推定精度を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-06-06T17:37:39Z) - Resampling methods for private statistical inference [1.8110941972682346]
我々は、信頼区間を異なるプライバシーで構築する作業について検討する。
データのパーティション上で実行される複数の"小さな"ブートストラップの結果の中央値をプライベートに計算する,非パラメトリックブートストラップの2つのプライベート変種を提案する。
固定された差分プライバシーパラメータ$epsilon$に対して、我々のメソッドは、サンプルサイズ$n$の対数係数内の非プライベートブートストラップと同じエラー率を享受します。
論文 参考訳(メタデータ) (2024-02-11T08:59:02Z) - Differentially private projection-depth-based medians [0.0]
提案・テスト・リリース(PTR)と指数的メカニズムを用いて,$(epsilon,delta)$-differentially private projection-depth-based mediansを開発した。
PTRにおけるテストが失敗する確率と、有限サンプル偏差境界によるプライバシコストを定量化する。
論文 参考訳(メタデータ) (2023-12-12T23:17:29Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Differentially Private Statistical Inference through $\beta$-Divergence
One Posterior Sampling [2.8544822698499255]
本稿では,モデルとデータ生成プロセス間の$beta$-divergenceの最小化を目標とした,一般化後部からの後部サンプリング手法を提案する。
これにより、基礎となるモデルの変更を必要とせずに、一般的に適用可能なプライベートな推定が可能になる。
我々は、$beta$D-Bayesが同一のプライバシー保証に対してより正確な推測を行うことを示す。
論文 参考訳(メタデータ) (2023-07-11T12:00:15Z) - General Gaussian Noise Mechanisms and Their Optimality for Unbiased Mean
Estimation [58.03500081540042]
プライベート平均推定に対する古典的なアプローチは、真の平均を計算し、バイアスのないがおそらく相関のあるガウスノイズを加えることである。
すべての入力データセットに対して、集中的な差分プライバシーを満たす非バイアス平均推定器が、少なくとも多くのエラーをもたらすことを示す。
論文 参考訳(メタデータ) (2023-01-31T18:47:42Z) - A Bias-Accuracy-Privacy Trilemma for Statistical Estimation [16.365507345447803]
任意の分布に対して,バイアスが低く,エラーが低く,プライバシ損失が低いアルゴリズムは存在しない。
偏りのない平均推定は、より寛容な差分プライバシーの概念の下で可能であることを示す。
論文 参考訳(メタデータ) (2023-01-30T23:40:20Z) - Differentially private multivariate medians [4.588028371034407]
差分的にプライベートな深度に基づく中央値に対する新しい有限サンプル性能保証法を開発した。
Cauchyの限界の下では、重み付けされた位置推定のコストがプライバシーのコストよりも高いことを示している。
論文 参考訳(メタデータ) (2022-10-12T17:56:04Z) - Nonparametric extensions of randomized response for private confidence sets [51.75485869914048]
本研究は,局所的差分プライバシー(LDP)の制約の下で,集団平均の非パラメトリック,非漸近的統計的推測を行う手法を導出する。
民営化データへのアクセスのみを与えられた場合、$mustar$に対して信頼区間(CI)と時間一様信頼シーケンス(CS)を提示する。
論文 参考訳(メタデータ) (2022-02-17T16:04:49Z) - Private Prediction Sets [72.75711776601973]
機械学習システムは、個人のプライバシーの確実な定量化と保護を必要とする。
これら2つのデシラタを共同で扱う枠組みを提案する。
本手法を大規模コンピュータビジョンデータセット上で評価する。
論文 参考訳(メタデータ) (2021-02-11T18:59:11Z) - Graph-Homomorphic Perturbations for Private Decentralized Learning [64.26238893241322]
ローカルな見積もりの交換は、プライベートデータに基づくデータの推測を可能にする。
すべてのエージェントで独立して選択された摂動により、パフォーマンスが著しく低下する。
本稿では,特定のヌル空間条件に従って摂動を構成する代替スキームを提案する。
論文 参考訳(メタデータ) (2020-10-23T10:35:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。