論文の概要: The Fluidity of Concept Representations in Human Brain Signals
- arxiv url: http://arxiv.org/abs/2002.08880v1
- Date: Thu, 20 Feb 2020 17:31:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-30 07:44:52.136693
- Title: The Fluidity of Concept Representations in Human Brain Signals
- Title(参考訳): ヒト脳信号における概念表現の流動性
- Authors: Eva Hendrikx (1) and Lisa Beinborn (1) ((1) University of Amsterdam)
- Abstract要約: 我々はfMRIデータにおける具体的な概念と抽象概念の識別可能性を分析する。
我々は流体概念の表現が人間の言語処理のより現実的なモデルに繋がると主張している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cognitive theories of human language processing often distinguish between
concrete and abstract concepts. In this work, we analyze the discriminability
of concrete and abstract concepts in fMRI data using a range of analysis
methods. We find that the distinction can be decoded from the signal with an
accuracy significantly above chance, but it is not found to be a relevant
structuring factor in clustering and relational analyses. From our detailed
comparison, we obtain the impression that human concept representations are
more fluid than dichotomous categories can capture. We argue that fluid concept
representations lead to more realistic models of human language processing
because they better capture the ambiguity and underspecification present in
natural language use.
- Abstract(参考訳): 人間の言語処理の認知理論は、しばしば具体的概念と抽象的概念を区別する。
本研究では,fMRIデータにおける具体的および抽象的概念の識別可能性について,分析手法を用いて分析する。
信号の識別は,確率をはるかに上回る精度で復号できるが,クラスタリングや関係解析において関連する構造化因子とは見なされない。
詳細な比較から,人間の概念表現はdichotomousカテゴリよりも流動的であるという印象を得た。
我々は、流動的な概念表現は、自然言語使用におけるあいまいさと過度な特化を捉えやすいので、人間の言語処理のより現実的なモデルをもたらすと主張する。
関連論文リスト
- Conceptual and Unbiased Reasoning in Language Models [98.90677711523645]
本稿では,抽象的質問に対する概念的推論をモデルに強制する,新しい概念化フレームワークを提案する。
既存の大規模言語モデルは概念的推論では不足しており、様々なベンチマークでは9%から28%に低下している。
ハイレベルな抽象的推論が不偏で一般化可能な意思決定の鍵となるので、モデルがどのように改善できるかについて議論する。
論文 参考訳(メタデータ) (2024-03-30T00:53:53Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - LOGICSEG: Parsing Visual Semantics with Neural Logic Learning and
Reasoning [73.98142349171552]
LOGICSEGは、神経誘導学習と論理推論をリッチデータとシンボリック知識の両方に統合する、全体論的視覚意味論である。
ファジィ論理に基づく連続的な緩和の間、論理式はデータとニューラルな計算グラフに基礎を置いており、論理によるネットワークトレーニングを可能にする。
これらの設計によりLOGICSEGは、既存のセグメンテーションモデルに容易に統合できる汎用的でコンパクトなニューラル論理マシンとなる。
論文 参考訳(メタデータ) (2023-09-24T05:43:19Z) - Interpretability is in the Mind of the Beholder: A Causal Framework for
Human-interpretable Representation Learning [22.201878275784246]
説明可能なAIは、入力機能などの低レベル要素の観点から定義された説明から、データから学んだ解釈可能な概念でエンコードされた説明へとシフトしている。
しかし、そのような概念を確実に取得する方法は、基本的には不明確である。
ポストホックな説明器と概念に基づくニューラルネットワークの両方に適した解釈可能な表現を得るための数学的枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-14T14:26:20Z) - A Recursive Bateson-Inspired Model for the Generation of Semantic Formal
Concepts from Spatial Sensory Data [77.34726150561087]
本稿では,複雑な感覚データから階層構造を生成するための記号のみの手法を提案する。
このアプローチは、概念や概念の創始の鍵としてのバテソンの差異の概念に基づいている。
このモデルは、トレーニングなしでかなりリッチだが人間に読まれる概念表現を生成することができる。
論文 参考訳(メタデータ) (2023-07-16T15:59:13Z) - Constructing Word-Context-Coupled Space Aligned with Associative
Knowledge Relations for Interpretable Language Modeling [0.0]
事前訓練された言語モデルにおけるディープニューラルネットワークのブラックボックス構造は、言語モデリングプロセスの解釈可能性を大幅に制限する。
解釈不能なニューラル表現と解釈不能な統計論理のアライメント処理を導入することで,ワードコンテキスト結合空間(W2CSpace)を提案する。
我々の言語モデルは,関連する最先端手法と比較して,優れた性能と信頼性の高い解釈能力を実現することができる。
論文 参考訳(メタデータ) (2023-05-19T09:26:02Z) - Conceptual structure coheres in human cognition but not in large
language models [7.405352374343134]
概念構造は, 文化, 言語, 推定方法の違いに対して堅牢であることを示す。
結果は、現代の大言語モデルと人間の認知の間に重要な違いを浮き彫りにしている。
論文 参考訳(メタデータ) (2023-04-05T21:27:01Z) - Discrete representations in neural models of spoken language [56.29049879393466]
音声言語の弱教師付きモデルの文脈における4つの一般的なメトリクスの利点を比較した。
異なる評価指標が矛盾する結果をもたらすことが分かりました。
論文 参考訳(メタデータ) (2021-05-12T11:02:02Z) - Is Disentanglement all you need? Comparing Concept-based &
Disentanglement Approaches [24.786152654589067]
概念に基づく説明と非絡み合いのアプローチの概要を述べる。
両クラスからの最先端のアプローチは、データ非効率、分類/回帰タスクの特定の性質に敏感、あるいは採用した概念表現に敏感であることを示す。
論文 参考訳(メタデータ) (2021-04-14T15:06:34Z) - Interpretable Representations in Explainable AI: From Theory to Practice [7.031336702345381]
解釈可能な表現は、ブラックボックス予測システムをターゲットにした多くの説明器のバックボーンである。
人間の理解可能な概念の存在と欠如をエンコードする解釈可能な表現の特性について検討する。
論文 参考訳(メタデータ) (2020-08-16T21:44:03Z) - Compositional Explanations of Neurons [52.71742655312625]
本稿では, 合成論理的概念を同定し, 深部表現におけるニューロンの説明手順について述べる。
本稿では,視覚と自然言語処理のモデルにおける解釈可能性に関するいくつかの疑問に答えるために,この手順を用いる。
論文 参考訳(メタデータ) (2020-06-24T20:37:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。