論文の概要: Is Disentanglement all you need? Comparing Concept-based &
Disentanglement Approaches
- arxiv url: http://arxiv.org/abs/2104.06917v1
- Date: Wed, 14 Apr 2021 15:06:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-04-15 13:33:12.094634
- Title: Is Disentanglement all you need? Comparing Concept-based &
Disentanglement Approaches
- Title(参考訳): Disentanglementは必要なだけか?
概念ベースと絡み合いのアプローチの比較
- Authors: Dmitry Kazhdan, Botty Dimanov, Helena Andres Terre, Mateja Jamnik,
Pietro Li\`o, Adrian Weller
- Abstract要約: 概念に基づく説明と非絡み合いのアプローチの概要を述べる。
両クラスからの最先端のアプローチは、データ非効率、分類/回帰タスクの特定の性質に敏感、あるいは採用した概念表現に敏感であることを示す。
- 参考スコア(独自算出の注目度): 24.786152654589067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept-based explanations have emerged as a popular way of extracting
human-interpretable representations from deep discriminative models. At the
same time, the disentanglement learning literature has focused on extracting
similar representations in an unsupervised or weakly-supervised way, using deep
generative models. Despite the overlapping goals and potential synergies, to
our knowledge, there has not yet been a systematic comparison of the
limitations and trade-offs between concept-based explanations and
disentanglement approaches. In this paper, we give an overview of these fields,
comparing and contrasting their properties and behaviours on a diverse set of
tasks, and highlighting their potential strengths and limitations. In
particular, we demonstrate that state-of-the-art approaches from both classes
can be data inefficient, sensitive to the specific nature of the
classification/regression task, or sensitive to the employed concept
representation.
- Abstract(参考訳): 概念に基づく説明は、深い識別モデルから人間の解釈可能な表現を抽出する一般的な方法として現れてきた。
同時に、散在学習文献は、深層生成モデルを用いて、教師なしまたは弱教師付き方法で類似した表現を抽出することに焦点を当てている。
重複する目標と潜在的なシナジーにもかかわらず、我々の知識では、概念に基づく説明と絡み合いアプローチの間の制限とトレードオフを体系的に比較していない。
本稿では,これらの分野を概観し,その特性と振る舞いを多種多様なタスク群で比較・比較し,潜在的な強みと限界を強調した。
特に、両クラスからの最先端のアプローチは、データ非効率、分類/回帰タスクの特定の性質に敏感、あるいは採用した概念表現に敏感であることを示す。
関連論文リスト
- CoLiDR: Concept Learning using Aggregated Disentangled Representations [29.932706137805713]
概念に基づくモデルを用いたディープニューラルネットワークの解釈可能性は、人間の理解可能な概念を通じてモデルの振る舞いを説明する有望な方法を提供する。
並列的な研究は、データ分散をその基盤となる生成因子に切り離し、データ生成プロセスを説明することに重点を置いている。
どちらの方向も広く注目されているが、数学的に不整合な表現と人間の理解可能な概念を統一するための生成的要因の観点から概念を説明する研究はほとんど行われていない。
論文 参考訳(メタデータ) (2024-07-27T16:55:14Z) - Understanding Distributed Representations of Concepts in Deep Neural
Networks without Supervision [25.449397570387802]
本稿では,ニューロンの主部分集合を選択することによって,概念の分散表現を発見する教師なし手法を提案する。
我々の経験から、類似のニューロン活性化状態のインスタンスはコヒーレントな概念を共有する傾向があることが示されている。
データ内のラベルなしサブクラスを特定し、誤分類の原因を検出するために利用することができる。
論文 参考訳(メタデータ) (2023-12-28T07:33:51Z) - Interpreting Pretrained Language Models via Concept Bottlenecks [55.47515772358389]
事前訓練された言語モデル(PLM)は、様々な自然言語処理タスクにおいて大きな進歩を遂げてきた。
ブラックボックスの性質による解釈可能性の欠如は、責任ある実装に課題をもたらす。
本研究では,人間にとって理解しやすい高レベルで有意義な概念を用いて,PLMを解釈する新しい手法を提案する。
論文 参考訳(メタデータ) (2023-11-08T20:41:18Z) - Uncovering Unique Concept Vectors through Latent Space Decomposition [0.0]
概念に基づく説明は、特徴帰属推定よりも解釈可能な優れたアプローチとして現れてきた。
本稿では,訓練中に深層モデルから学んだ概念を自動的に発見するポストホックな教師なし手法を提案する。
実験の結果、我々の概念の大部分は、人間にとって容易に理解でき、一貫性を示し、目の前の課題に関連があることが判明した。
論文 参考訳(メタデータ) (2023-07-13T17:21:54Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
対照的な学習を通してテキスト分類のための等化オッズとして知られる公平性の概念を満たす学習公正表現について研究する。
具体的には、まず、公正性制約のある学習表現と条件付き教師付きコントラスト目的との間の関係を理論的に分析する。
論文 参考訳(メタデータ) (2022-05-23T17:38:30Z) - Discovering Concepts in Learned Representations using Statistical
Inference and Interactive Visualization [0.76146285961466]
概念発見は、深層学習の専門家とモデルエンドユーザーの間のギャップを埋めるために重要である。
現在のアプローチには、手作りの概念データセットと、それを潜在空間方向に変換することが含まれる。
本研究では,複数の仮説テストに基づく意味ある概念のユーザ発見と,インタラクティブな可視化に関する2つのアプローチを提案する。
論文 参考訳(メタデータ) (2022-02-09T22:29:48Z) - Translational Concept Embedding for Generalized Compositional Zero-shot
Learning [73.60639796305415]
一般合成ゼロショット学習は、ゼロショット方式で属性オブジェクト対の合成概念を学習する手段である。
本稿では,これら2つの課題を統一的なフレームワークで解決するために,翻訳概念の埋め込み(translational concept embedded)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2021-12-20T21:27:51Z) - Discriminative Attribution from Counterfactuals [64.94009515033984]
本稿では,特徴属性と反実的説明を組み合わせたニューラルネットワークの解釈可能性について述べる。
本手法は,特徴属性法の性能を客観的に評価するために有効であることを示す。
論文 参考訳(メタデータ) (2021-09-28T00:53:34Z) - Deep Clustering by Semantic Contrastive Learning [67.28140787010447]
Semantic Contrastive Learning (SCL) と呼ばれる新しい変種を紹介します。
従来のコントラスト学習とディープクラスタリングの両方の特徴を探求する。
コントラスト学習と深層クラスタリングの強みを統一的なアプローチで増幅することができる。
論文 参考訳(メタデータ) (2021-03-03T20:20:48Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。