Topologically penalized regression on manifolds
- URL: http://arxiv.org/abs/2110.13749v1
- Date: Tue, 26 Oct 2021 14:59:13 GMT
- Title: Topologically penalized regression on manifolds
- Authors: Olympio Hacquard (LMO, DATASHAPE), Krishnakumar Balasubramanian (UC
Davis), Gilles Blanchard (LMO, DATASHAPE), Wolfgang Polonik (UC Davis),
Cl\'ement Levrard (LPSM (UMR\_8001))
- Abstract summary: We study a regression problem on a compact manifold M.
In order to take advantage of the underlying geometry and topology of the data, the regression task is performed on the basis of the first several eigenfunctions of the Laplace-Beltrami operator of the manifold.
The proposed penalties are based on the topology of the sub-level sets of either the eigenfunctions or the estimated function.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study a regression problem on a compact manifold M. In order to take
advantage of the underlying geometry and topology of the data, the regression
task is performed on the basis of the first several eigenfunctions of the
Laplace-Beltrami operator of the manifold, that are regularized with
topological penalties. The proposed penalties are based on the topology of the
sub-level sets of either the eigenfunctions or the estimated function. The
overall approach is shown to yield promising and competitive performance on
various applications to both synthetic and real data sets. We also provide
theoretical guarantees on the regression function estimates, on both its
prediction error and its smoothness (in a topological sense). Taken together,
these results support the relevance of our approach in the case where the
targeted function is "topologically smooth".
Related papers
- Relative Representations: Topological and Geometric Perspectives [53.88896255693922]
Relative representations are an established approach to zero-shot model stitching.
We introduce a normalization procedure in the relative transformation, resulting in invariance to non-isotropic rescalings and permutations.
Second, we propose to deploy topological densification when fine-tuning relative representations, a topological regularization loss encouraging clustering within classes.
arXiv Detail & Related papers (2024-09-17T08:09:22Z) - Generalization bounds for regression and classification on adaptive covering input domains [1.4141453107129398]
We focus on the generalization bound, which serves as an upper limit for the generalization error.
In the case of classification tasks, we treat the target function as a one-hot, a piece-wise constant function, and employ 0/1 loss for error measurement.
arXiv Detail & Related papers (2024-07-29T05:40:08Z) - Conformal inference for regression on Riemannian Manifolds [49.7719149179179]
We investigate prediction sets for regression scenarios when the response variable, denoted by $Y$, resides in a manifold, and the covariable, denoted by X, lies in Euclidean space.
We prove the almost sure convergence of the empirical version of these regions on the manifold to their population counterparts.
arXiv Detail & Related papers (2023-10-12T10:56:25Z) - Structured Radial Basis Function Network: Modelling Diversity for
Multiple Hypotheses Prediction [51.82628081279621]
Multi-modal regression is important in forecasting nonstationary processes or with a complex mixture of distributions.
A Structured Radial Basis Function Network is presented as an ensemble of multiple hypotheses predictors for regression problems.
It is proved that this structured model can efficiently interpolate this tessellation and approximate the multiple hypotheses target distribution.
arXiv Detail & Related papers (2023-09-02T01:27:53Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Adaptive LASSO estimation for functional hidden dynamic geostatistical
model [69.10717733870575]
We propose a novel model selection algorithm based on a penalized maximum likelihood estimator (PMLE) for functional hiddenstatistical models (f-HD)
The algorithm is based on iterative optimisation and uses an adaptive least absolute shrinkage and selector operator (GMSOLAS) penalty function, wherein the weights are obtained by the unpenalised f-HD maximum-likelihood estimators.
arXiv Detail & Related papers (2022-08-10T19:17:45Z) - Robust Regularized Low-Rank Matrix Models for Regression and
Classification [14.698622796774634]
We propose a framework for matrix variate regression models based on a rank constraint, vector regularization (e.g., sparsity), and a general loss function.
We show that the algorithm is guaranteed to converge, all accumulation points of the algorithm have estimation errors in the order of $O(sqrtn)$ally and substantially attaining the minimax rate.
arXiv Detail & Related papers (2022-05-14T18:03:48Z) - Communication-Efficient Distributed Quantile Regression with Optimal
Statistical Guarantees [2.064612766965483]
We address the problem of how to achieve optimal inference in distributed quantile regression without stringent scaling conditions.
The difficulties are resolved through a double-smoothing approach that is applied to the local (at each data source) and global objective functions.
Despite the reliance on a delicate combination of local and global smoothing parameters, the quantile regression model is fully parametric.
arXiv Detail & Related papers (2021-10-25T17:09:59Z) - Multivariate Functional Regression via Nested Reduced-Rank
Regularization [2.730097437607271]
We propose a nested reduced-rank regression (NRRR) approach in fitting regression model with multivariate functional responses and predictors.
We show through non-asymptotic analysis that NRRR can achieve at least a comparable error rate to that of the reduced-rank regression.
We apply NRRR in an electricity demand problem, to relate the trajectories of the daily electricity consumption with those of the daily temperatures.
arXiv Detail & Related papers (2020-03-10T14:58:54Z) - Generalisation error in learning with random features and the hidden
manifold model [23.71637173968353]
We study generalised linear regression and classification for a synthetically generated dataset.
We consider the high-dimensional regime and using the replica method from statistical physics.
We show how to obtain the so-called double descent behaviour for logistic regression with a peak at the threshold.
We discuss the role played by correlations in the data generated by the hidden manifold model.
arXiv Detail & Related papers (2020-02-21T14:49:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.