Quantum Coherence in Ergodic and Many-Body Localized Systems
- URL: http://arxiv.org/abs/2002.09447v2
- Date: Sun, 26 Jul 2020 14:26:03 GMT
- Title: Quantum Coherence in Ergodic and Many-Body Localized Systems
- Authors: Sayandip Dhara, Alioscia Hamma, Eduardo R. Mucciolo
- Abstract summary: We numerically calculate different measures of quantum coherence in the excited eigenstates of an interacting disordered Hamiltonian.
We show that quantum coherence can be used as an order parameter to detect the well-studied ergodic to many-body-localized phase transition.
We then present a protocol to calculate measurement-based localizable coherence to investigate the thermal and many-body localized phases.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum coherence quantifies the amount of superposition a quantum state can
have in a given basis. Since there is a difference in the structure of
eigenstates of the ergodic and many-body localized systems, we expect them also
to differ in terms of their coherences in a given basis. Here, we numerically
calculate different measures of quantum coherence in the excited eigenstates of
an interacting disordered Hamiltonian as a function of the disorder. We show
that quantum coherence can be used as an order parameter to detect the
well-studied ergodic to many-body-localized phase transition. We also perform
quantum quench studies to distinguish the behavior of coherence in thermalized
and localized phases. We then present a protocol to calculate measurement-based
localizable coherence to investigate the thermal and many-body localized
phases. The protocol allows one to investigate quantum correlations
experimentally in a non-destructive way, in contrast to measures that require
tracing out a subsystem, which always destroys coherence and correlation.
Related papers
- Robustness of quantum correlation in quantum energy teleportation [0.0]
We present the evolution of quantum correlation in the quantum energy teleportation (QET) protocol using quantum discord.
In the QET protocol, where local observations and conditional operations are repeated, quantum correlations become nontrivial because of the statistical creation of mixed states.
arXiv Detail & Related papers (2024-02-01T10:35:09Z) - Quantifying measurement-induced quantum-to-classical crossover using an
open-system entanglement measure [49.1574468325115]
We study the entanglement of a single particle under continuous measurements.
We find that the entanglement at intermediate time scales shows the same qualitative behavior as a function of the measurement strength.
arXiv Detail & Related papers (2023-04-06T09:45:11Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising
model to gauge theory, and beyond [3.079076817894202]
Measurements allow efficient preparation of interesting quantum many-body states with long-range entanglement.
We demonstrate that the so-called conformal quantum critical points can be obtained by performing general single-site measurements.
arXiv Detail & Related papers (2022-08-24T17:59:58Z) - Characterizing quantum criticality and steered coherence in the XY-Gamma
chain [0.37498611358320727]
We analytically solve the one-dimensional short-range interacting case with the Jordan-Wigner transformation.
In the gapless phase, an incommensurate spiral order is manifested by the vector-chiral correlations.
We derive explicit scaling forms of the excitation gap near the quantum critical points.
arXiv Detail & Related papers (2022-06-08T15:28:10Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Enhancing the estimation precision of an unknown phase shift in
multipartite Glauber coherent states via skew information correlations and
local quantum Fisher information [0.0]
Local quantum uncertainty (LQU) and local quantum Fisher information (LQFI) are two tools used to capture purely quantum correlations in multi-partite quantum systems.
We study these quantifiers in the case of multipartite Glauber coherent state which include the GHZ (Greenberger-Horne-Zeilinger) and Werner states.
arXiv Detail & Related papers (2021-10-18T15:55:19Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Distribution of quantum coherence and quantum phase transition in the
Ising system [2.318473106845779]
Quantifying quantum coherence of a given system plays an important role in quantum information science.
We propose an analysis on the critical behavior of two types Ising systems when distribution of quantum coherence.
arXiv Detail & Related papers (2020-01-29T07:28:04Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.