Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising
model to gauge theory, and beyond
- URL: http://arxiv.org/abs/2208.11699v2
- Date: Tue, 6 Sep 2022 16:28:58 GMT
- Title: Decoding Measurement-Prepared Quantum Phases and Transitions: from Ising
model to gauge theory, and beyond
- Authors: Jong Yeon Lee, Wenjie Ji, Zhen Bi, Matthew P. A. Fisher
- Abstract summary: Measurements allow efficient preparation of interesting quantum many-body states with long-range entanglement.
We demonstrate that the so-called conformal quantum critical points can be obtained by performing general single-site measurements.
- Score: 3.079076817894202
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Measurements allow efficient preparation of interesting quantum many-body
states with long-range entanglement, conditioned on additional transformations
based on measurement outcomes. Here, we demonstrate that the so-called
conformal quantum critical points (CQCP) can be obtained by performing general
single-site measurements in an appropriate basis on the cluster states in
$d\geq2$. The equal-time correlators of the said states are described by
correlation functions of certain $d$-dimensional classical models at finite
temperatures and feature spatial conformal invariance. This establishes an
exact correspondence between the measurement-prepared critical states and
conformal field theories of a range of critical spin models, including familiar
Ising models and gauge theories. Furthermore, by mapping the long-range
entanglement structure of measured quantum states into the correlations of the
corresponding thermal spin model, we rigorously establish the stability
condition of the long-range entanglement in the measurement-prepared quantum
states deviating from the ideal setting. Most importantly, we describe
protocols to decode the resulting quantum phases and transitions without
post-selection, thus transferring the exponential measurement complexity to a
polynomial classical computation. Therefore, our findings suggest a novel
mechanism in which a quantum critical wavefunction emerges, providing new
practical ways to study quantum phases and conformal quantum critical points.
Related papers
- Entanglement Structure of Non-Gaussian States and How to Measure It [0.0]
We present a protocol that constrains quantum states by experimentally measured correlation functions.
This method enables measurement of a quantum state's entanglement structure.
We show the protocol's usefulness in conjunction with current and forthcoming experimental capabilities.
arXiv Detail & Related papers (2024-07-16T18:00:01Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Ground state-based quantum feature maps [17.857341127079305]
We introduce a quantum data embedding protocol based on the preparation of a ground state of a parameterized Hamiltonian.
We show that ground state embeddings can be described effectively by a spectrum with degree that grows rapidly with the number of qubits.
arXiv Detail & Related papers (2024-04-10T17:17:05Z) - Quantum metric and metrology with parametrically-driven Tavis-Cummings
models [4.419622364505575]
We study the quantum metric in a driven Tavis-Cummings model, comprised of multiple qubits interacting with a quantized photonic field.
We analytically solved the eigenenergies and eigenstates, and numerically simulated the system behaviors near the critical point.
arXiv Detail & Related papers (2023-12-13T14:20:03Z) - Quantum Effects on the Synchronization Dynamics of the Kuramoto Model [62.997667081978825]
We show that quantum fluctuations hinder the emergence of synchronization, albeit not entirely suppressing it.
We derive an analytical expression for the critical coupling, highlighting its dependence on the model parameters.
arXiv Detail & Related papers (2023-06-16T16:41:16Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Investigation of the Behavior of Quantum Coherence in Quantum Phase
Transitions of Two-Dimensional XY and Ising Models [0.0]
We investigate the behavior of quantum coherence of the ground states of 2D Heisenberg XY model and 2D Ising model with transverse field on square lattices.
We show that the non-analytic behavior of quantum coherence near the critical point, can detect quantum phase transition (QPT) of these models.
arXiv Detail & Related papers (2022-07-30T07:47:02Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Critical Quantum Metrology with Fully-Connected Models: From Heisenberg
to Kibble-Zurek Scaling [0.0]
Phase transitions represent a compelling tool for classical and quantum sensing applications.
Quantum sensors can saturate the Heisenberg scaling in the limit of large probe number and long measurement time.
Our analysis unveils the existence of universal precision-scaling regimes.
arXiv Detail & Related papers (2021-10-08T14:11:54Z) - State preparation and measurement in a quantum simulation of the O(3)
sigma model [65.01359242860215]
We show that fixed points of the non-linear O(3) sigma model can be reproduced near a quantum phase transition of a spin model with just two qubits per lattice site.
We apply Trotter methods to obtain results for the complexity of adiabatic ground state preparation in both the weak-coupling and quantum-critical regimes.
We present and analyze a quantum algorithm based on non-unitary randomized simulation methods.
arXiv Detail & Related papers (2020-06-28T23:44:12Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.