論文の概要: Clustering as an Evaluation Protocol for Knowledge Embedding
Representation of Categorised Multi-relational Data in the Clinical Domain
- arxiv url: http://arxiv.org/abs/2002.09473v1
- Date: Sun, 29 Dec 2019 16:04:22 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-17 07:27:20.082190
- Title: Clustering as an Evaluation Protocol for Knowledge Embedding
Representation of Categorised Multi-relational Data in the Clinical Domain
- Title(参考訳): 臨床領域における分類付き多関係データの表現を組み込む評価プロトコルとしてのクラスタリング
- Authors: Jianyu Liu and Hegler Tissot
- Abstract要約: 臨床領域における分類された多関係データに対する知識表現の埋め込みにおける従来のリンク予測や知識グラフ補完の評価プロトコルの有効性について検討する。
リンク予測は、データをトレーニングと評価サブセットに分割することで、トレーニングに伴う情報の喪失と知識表現モデルの精度の低下につながる。
本稿では,従来の評価タスクの代替としてクラスタリング評価プロトコルを提案する。
- 参考スコア(独自算出の注目度): 0.10878040851637999
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning knowledge representation is an increasingly important technology
applicable in many domain-specific machine learning problems. We discuss the
effectiveness of traditional Link Prediction or Knowledge Graph Completion
evaluation protocol when embedding knowledge representation for categorised
multi-relational data in the clinical domain. Link prediction uses to split the
data into training and evaluation subsets, leading to loss of information along
training and harming the knowledge representation model accuracy. We propose a
Clustering Evaluation Protocol as a replacement alternative to the
traditionally used evaluation tasks. We used embedding models trained by a
knowledge embedding approach which has been evaluated with clinical datasets.
Experimental results with Pearson and Spearman correlations show strong
evidence that the novel proposed evaluation protocol is pottentially able to
replace link prediction.
- Abstract(参考訳): 知識表現の学習は、多くのドメイン固有の機械学習問題に適用できる、ますます重要な技術である。
臨床領域に分類された複数関連データに対して知識表現を埋め込む場合,従来のリンク予測や知識グラフ完成度評価プロトコルの有効性について検討する。
リンク予測は、データをトレーニングと評価サブセットに分割することで、トレーニングに伴う情報の喪失と知識表現モデルの精度の低下につながる。
本稿では,従来の評価タスクの代替としてクラスタリング評価プロトコルを提案する。
臨床データセットで評価した知識埋め込みアプローチで学習した埋め込みモデルを用いた。
Pearson と Spearman の相関による実験結果から,提案手法がリンク予測の置き換えに有効であることが示唆された。
関連論文リスト
- Rethinking Affect Analysis: A Protocol for Ensuring Fairness and Consistency [24.737468736951374]
本稿では,データベース分割のための統一プロトコルを提案する。
我々は、(人種、性別、年齢の観点から)詳細な統計アノテーション、評価指標、および表現認識のための共通のフレームワークを提供する。
また、新しいプロトコルでメソッドを再実行し、より公平な比較で影響認識の今後の研究を促進するための新しいリーダーボードを導入します。
論文 参考訳(メタデータ) (2024-08-04T23:21:46Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
深層学習を用いた時系列計算のための新しい分類フレームワークを提案する。
文献における概念的ギャップと既存のレビューを識別することにより、ニューラル・インパテーション・フレームワークの帰納的バイアスに基づく分類法を考案する。
論文 参考訳(メタデータ) (2024-07-11T12:33:28Z) - MLIP: Enhancing Medical Visual Representation with Divergence Encoder
and Knowledge-guided Contrastive Learning [48.97640824497327]
本稿では、画像テキストのコントラスト学習を通じて、言語情報を視覚領域に統合するための案内信号として、ドメイン固有の医療知識を活用する新しいフレームワークを提案する。
我々のモデルには、設計した分散エンコーダによるグローバルコントラスト学習、局所トークン・知識・パッチアライメントコントラスト学習、知識誘導型カテゴリレベルのコントラスト学習、エキスパートナレッジによるコントラスト学習が含まれる。
特に、MLIPは、限られた注釈付きデータであっても最先端の手法を超越し、医療表現学習の進歩におけるマルチモーダル事前学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-02-03T05:48:50Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Efficient training of lightweight neural networks using Online
Self-Acquired Knowledge Distillation [51.66271681532262]
オンライン自己獲得知識蒸留(OSAKD)は、ディープニューラルネットワークの性能をオンライン的に向上することを目的としている。
出力特徴空間におけるデータサンプルの未知確率分布を推定するために、k-nnノンパラメトリック密度推定手法を用いる。
論文 参考訳(メタデータ) (2021-08-26T14:01:04Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Stochastic Mutual Information Gradient Estimation for Dimensionality
Reduction Networks [11.634729459989996]
エンドツーエンドのニューラルネットワークトレーニングアプローチとして,情報理論的特徴変換プロトコルを導入する。
本稿では,相互情報勾配の推定に基づく次元還元ネットワーク(MMINET)のトレーニング手法を提案する。
本手法を高次元生物データセットに適用して実験的に評価し,従来の特徴選択アルゴリズムと関連付ける。
論文 参考訳(メタデータ) (2021-05-01T08:20:04Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Siloed Federated Learning for Multi-Centric Histopathology Datasets [0.17842332554022694]
本稿では,医学領域における深層学習アーキテクチャのための新しいフェデレーション学習手法を提案する。
局所統計バッチ正規化(BN)層が導入され、協調的に訓練されるが中心に固有のモデルが作られる。
本研究では,Camelyon16およびCamelyon17データセットから抽出した腫瘍組織像の分類法についてベンチマークを行った。
論文 参考訳(メタデータ) (2020-08-17T15:49:30Z) - Adversarial Multi-Source Transfer Learning in Healthcare: Application to
Glucose Prediction for Diabetic People [4.17510581764131]
本稿では,複数のソース間で類似した特徴表現の学習を可能にする多元逆変換学習フレームワークを提案する。
完全畳み込みニューラルネットワークを用いた糖尿病患者の血糖予測にこの考え方を適用した。
特に、異なるデータセットのデータを使用したり、あるいはデータセット内の状況にデータが少ない場合に輝く。
論文 参考訳(メタデータ) (2020-06-29T11:17:50Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。