Self-Supervised Poisson-Gaussian Denoising
- URL: http://arxiv.org/abs/2002.09558v2
- Date: Thu, 19 Nov 2020 01:13:33 GMT
- Title: Self-Supervised Poisson-Gaussian Denoising
- Authors: Wesley Khademi, Sonia Rao, Clare Minnerath, Guy Hagen, and Jonathan
Ventura
- Abstract summary: We extend the blindspot model for self-supervised denoising to handle Poisson-Gaussian noise.
We introduce a new training strategy to handle Poisson-Gaussian noise which is the standard noise model for microscope images.
We show how our denoiser can be adapted to the test data to improve performance.
- Score: 1.957338076370071
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We extend the blindspot model for self-supervised denoising to handle
Poisson-Gaussian noise and introduce an improved training scheme that avoids
hyperparameters and adapts the denoiser to the test data. Self-supervised
models for denoising learn to denoise from only noisy data and do not require
corresponding clean images, which are difficult or impossible to acquire in
some application areas of interest such as low-light microscopy. We introduce a
new training strategy to handle Poisson-Gaussian noise which is the standard
noise model for microscope images. Our new strategy eliminates hyperparameters
from the loss function, which is important in a self-supervised regime where no
ground truth data is available to guide hyperparameter tuning. We show how our
denoiser can be adapted to the test data to improve performance. Our
evaluations on microscope image denoising benchmarks validate our approach.
Related papers
- Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - PoGaIN: Poisson-Gaussian Image Noise Modeling from Paired Samples [9.22047303381213]
We derive a novel, cumulant-based, approach for Poisson-Gaussian noise modeling from paired image samples.
We show its improved performance over different baselines with special emphasis on MSE, effect of outliers, image dependence and bias.
arXiv Detail & Related papers (2022-10-10T17:34:49Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Deep Variation Prior: Joint Image Denoising and Noise Variance
Estimation without Clean Data [2.3061446605472558]
This paper investigates the tasks of image denoising and noise variance estimation in a single, joint learning framework.
We build upon DVP, an unsupervised deep learning framework, that simultaneously learns a denoiser and estimates noise variances.
Our method does not require any clean training images or an external step of noise estimation, and instead, approximates the minimum mean squared error denoisers using only a set of noisy images.
arXiv Detail & Related papers (2022-09-19T17:29:32Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Physics-based Noise Modeling for Extreme Low-light Photography [63.65570751728917]
We study the noise statistics in the imaging pipeline of CMOS photosensors.
We formulate a comprehensive noise model that can accurately characterize the real noise structures.
Our noise model can be used to synthesize realistic training data for learning-based low-light denoising algorithms.
arXiv Detail & Related papers (2021-08-04T16:36:29Z) - Adaptive Denoising via GainTuning [17.72738152112575]
Deep convolutional neural networks (CNNs) for image denoising are usually trained on large datasets.
We propose "GainTuning", in which CNN models pre-trained on large datasets are adaptively and selectively adjusted for individual test images.
We show that GainTuning improves state-of-the-art CNNs on standard image-denoising benchmarks, boosting their denoising performance on nearly every image in a held-out test set.
arXiv Detail & Related papers (2021-07-27T13:35:48Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Salvage Reusable Samples from Noisy Data for Robust Learning [70.48919625304]
We propose a reusable sample selection and correction approach, termed as CRSSC, for coping with label noise in training deep FG models with web images.
Our key idea is to additionally identify and correct reusable samples, and then leverage them together with clean examples to update the networks.
arXiv Detail & Related papers (2020-08-06T02:07:21Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.