論文の概要: Preference Modeling with Context-Dependent Salient Features
- arxiv url: http://arxiv.org/abs/2002.09615v2
- Date: Sat, 27 Jun 2020 01:45:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 18:53:44.720421
- Title: Preference Modeling with Context-Dependent Salient Features
- Title(参考訳): 文脈依存型サルエント特徴を用いた選好モデル
- Authors: Amanda Bower and Laura Balzano
- Abstract要約: 本稿では,各項目の特徴について,ノイズの多いペアワイド比較から,項目集合のランキングを推定する問題を考察する。
私たちのキーとなる観察は、他の項目から分離して比較した2つの項目は、機能の健全なサブセットのみに基づいて比較できるということです。
- 参考スコア(独自算出の注目度): 12.403492796441434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the problem of estimating a ranking on a set of items from noisy
pairwise comparisons given item features. We address the fact that pairwise
comparison data often reflects irrational choice, e.g. intransitivity. Our key
observation is that two items compared in isolation from other items may be
compared based on only a salient subset of features. Formalizing this
framework, we propose the salient feature preference model and prove a finite
sample complexity result for learning the parameters of our model and the
underlying ranking with maximum likelihood estimation. We also provide
empirical results that support our theoretical bounds and illustrate how our
model explains systematic intransitivity. Finally we demonstrate strong
performance of maximum likelihood estimation of our model on both synthetic
data and two real data sets: the UT Zappos50K data set and comparison data
about the compactness of legislative districts in the US.
- Abstract(参考訳): 提案手法では,各項目の特徴量に対するノイズ対比較から,項目集合のランキングを推定する問題を考える。
ペア比較データが不合理な選択をしばしば反映しているという事実に対処する。
重要な観察は、他の項目と分離して比較される2つの項目は、機能の一部分のみに基づいて比較される可能性があることです。
この枠組みを定式化し,提案手法を用いた特徴選好モデルを提案し,モデルのパラメータと基礎となるランキングを最大確率推定で学習するための有限サンプル複雑性を証明した。
また,理論境界を支持する経験的結果を提供し,モデルがどのように系統的不透過性を説明するかを説明する。
最後に, UT Zappos50Kデータセットと米国における立法区のコンパクト性の比較データを用いて, 合成データと2つの実データに対して, モデルの最大推定性能を示す。
関連論文リスト
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Statistical inference for pairwise comparison models [5.487882744996216]
本稿では、ペアワイズ比較モデルの幅広いクラスにおいて、最大極大に対する準最適正規性を確立する。
鍵となる考え方は、フィッシャー情報行列を重み付きグラフラプラシアンとして同定することである。
論文 参考訳(メタデータ) (2024-01-16T16:14:09Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - Two-Sample Testing on Ranked Preference Data and the Role of Modeling
Assumptions [57.77347280992548]
本稿では,ペアワイズ比較データとランキングデータのための2サンプル試験を設計する。
私たちのテストでは、基本的に分布に関する仮定は必要ありません。
実世界のペアワイズ比較データに2サンプルテストを適用することで、人によって提供される評価とランキングは、実際は異なる分散である、と結論付ける。
論文 参考訳(メタデータ) (2020-06-21T20:51:09Z) - Evaluating Text Coherence at Sentence and Paragraph Levels [17.99797111176988]
本稿では,既存の文順序付け手法の段落順序付けタスクへの適応について検討する。
また、ミニデータセットとノイズの多いデータセットを人工的に作成することで、既存のモデルの学習性と堅牢性を比較する。
我々は、リカレントグラフニューラルネットワークに基づくモデルがコヒーレンスモデリングの最適選択であると結論付けている。
論文 参考訳(メタデータ) (2020-06-05T03:31:49Z) - Interpretable Meta-Measure for Model Performance [4.91155110560629]
Elo-based Predictive Power (EPP) と呼ばれる新しいメタスコアアセスメントを導入する。
EPPは、他のパフォーマンス指標の上に構築されており、モデルの解釈可能な比較を可能にする。
本研究では,EPPの数学的特性を証明し,30の分類データセット上の大規模ベンチマークと実世界のビジュアルデータに対するベンチマークを実証的に支援する。
論文 参考訳(メタデータ) (2020-06-02T14:10:13Z) - Decomposed Adversarial Learned Inference [118.27187231452852]
我々は,DALI(Decomposed Adversarial Learned Inference)という新しいアプローチを提案する。
DALIは、データ空間とコード空間の両方の事前および条件分布を明示的に一致させる。
MNIST, CIFAR-10, CelebAデータセットにおけるDALIの有効性を検証する。
論文 参考訳(メタデータ) (2020-04-21T20:00:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。