Multi-objective beetle antennae search algorithm
- URL: http://arxiv.org/abs/2002.10090v2
- Date: Wed, 5 Aug 2020 00:23:00 GMT
- Title: Multi-objective beetle antennae search algorithm
- Authors: Junfei Zhang, Yimiao Huang, Guowei Ma, Brett Nener
- Abstract summary: The proposed multi-objective beetle antennae search algorithm is tested using four well-selected benchmark functions.
The results show that the proposed multi-objective beetle antennae search algorithm has higher computational efficiency with satisfactory accuracy.
- Score: 4.847470451539327
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In engineering optimization problems, multiple objectives with a large number
of variables under highly nonlinear constraints are usually required to be
simultaneously optimized. Significant computing effort are required to find the
Pareto front of a nonlinear multi-objective optimization problem. Swarm
intelligence based metaheuristic algorithms have been successfully applied to
solve multi-objective optimization problems. Recently, an individual
intelligence based algorithm called beetle antennae search algorithm was
proposed. This algorithm was proved to be more computationally efficient.
Therefore, we extended this algorithm to solve multi-objective optimization
problems. The proposed multi-objective beetle antennae search algorithm is
tested using four well-selected benchmark functions and its performance is
compared with other multi-objective optimization algorithms. The results show
that the proposed multi-objective beetle antennae search algorithm has higher
computational efficiency with satisfactory accuracy.
Related papers
- Multi-objective Memetic Algorithm with Adaptive Weights for Inverse Antenna Design [0.0]
modification of a single-objective algorithm into its multi-objective counterpart.
Result is a considerable increase in speed in the order of tens to hundreds.
arXiv Detail & Related papers (2024-08-07T08:43:38Z) - Effective anytime algorithm for multiobjective combinatorial optimization problems [3.2061579211871383]
A set of efficient solutions that are well-spread in the objective space is preferred to provide the decision maker with a great variety of solutions.
We propose a new exact algorithm for multiobjective optimization combining three novel ideas to enhance the anytime behavior.
arXiv Detail & Related papers (2024-02-06T11:53:44Z) - Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm [4.0814527055582746]
It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated.
evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons.
arXiv Detail & Related papers (2023-09-04T06:32:02Z) - Improving Performance Insensitivity of Large-scale Multiobjective
Optimization via Monte Carlo Tree Search [7.34812867861951]
We propose an evolutionary algorithm for solving large-scale multiobjective optimization problems based on Monte Carlo tree search.
The proposed method samples the decision variables to construct new nodes on the Monte Carlo tree for optimization and evaluation.
It selects nodes with good evaluation for further search to reduce the performance sensitivity caused by large-scale decision variables.
arXiv Detail & Related papers (2023-04-08T17:15:49Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - A survey on multi-objective hyperparameter optimization algorithms for
Machine Learning [62.997667081978825]
This article presents a systematic survey of the literature published between 2014 and 2020 on multi-objective HPO algorithms.
We distinguish between metaheuristic-based algorithms, metamodel-based algorithms, and approaches using a mixture of both.
We also discuss the quality metrics used to compare multi-objective HPO procedures and present future research directions.
arXiv Detail & Related papers (2021-11-23T10:22:30Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
Vehicle routing problem (VRP) is a typical discrete optimization problem.
Many studies consider learning-based optimization algorithms to solve VRP.
This paper reviews recent advances in this field and divides relevant approaches into end-to-end approaches and step-by-step approaches.
arXiv Detail & Related papers (2021-07-15T02:13:03Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Benchmarking Meta-heuristic Optimization [0.0]
Many meta-heuristic algorithms are very efficient when solving nonlinear functions.
A meta-heuristic algorithm is a problem-independent technique that can be applied to a broad range of problems.
arXiv Detail & Related papers (2020-07-27T12:25:31Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.