Multi-objective Memetic Algorithm with Adaptive Weights for Inverse Antenna Design
- URL: http://arxiv.org/abs/2409.14245v1
- Date: Wed, 7 Aug 2024 08:43:38 GMT
- Title: Multi-objective Memetic Algorithm with Adaptive Weights for Inverse Antenna Design
- Authors: Petr Kadlec, Miloslav Capek,
- Abstract summary: modification of a single-objective algorithm into its multi-objective counterpart.
Result is a considerable increase in speed in the order of tens to hundreds.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper describes the modification of a single-objective algorithm into its multi-objective counterpart. The outcome is a considerable increase in speed in the order of tens to hundreds and the resulting Pareto front is of higher quality compared to conventional state-of-the-art automated inverse design setups. This advancement is possible thanks to a memetic algorithm combining a gradient-based search for local minima with heuristic optimization to maintain sufficient diversity. The local algorithm is based on rank-1 perturbations; the global algorithm is NSGA-II. An important advancement is the adaptive weighting of objective functions during optimization. The procedure is tested on three challenging examples dealing with both physical and topological metrics and multi-objective settings. The results are compared with standard techniques, and the superb performance of the proposed technique is reported. The implemented algorithm applies to antenna inverse design problems and is an efficient data miner for machine learning tools.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Efficient Inverse Design Optimization through Multi-fidelity Simulations, Machine Learning, and Search Space Reduction Strategies [0.8646443773218541]
This paper introduces a methodology designed to augment the inverse design optimization process in scenarios constrained by limited compute.
The proposed methodology is analyzed on two distinct engineering inverse design problems: airfoil inverse design and the scalar field reconstruction problem.
Notably, this method is adaptable across any inverse design application, facilitating a synergy between a representative low-fidelity ML model, and high-fidelity simulation, and can be seamlessly applied across any variety of population-based optimization algorithms.
arXiv Detail & Related papers (2023-12-06T18:20:46Z) - Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Enhanced Teaching-Learning-based Optimization for 3D Path Planning of
Multicopter UAVs [2.0305676256390934]
This paper introduces a new path planning algorithm for unmanned aerial vehicles (UAVs) based on the teaching-learning-based optimization technique.
We first define an objective function that incorporates requirements on the path length and constraints on the movement and safe operation of UAVs.
The algorithm named Multi-subject TLBO is then proposed to minimize the formulated objective function.
arXiv Detail & Related papers (2022-05-31T16:00:32Z) - A Simple Evolutionary Algorithm for Multi-modal Multi-objective
Optimization [0.0]
We introduce a steady-state evolutionary algorithm for solving multi-modal, multi-objective optimization problems (MMOPs)
We report its performance on 21 MMOPs from various test suites that are widely used for benchmarking using a low computational budget of 1000 function evaluations.
arXiv Detail & Related papers (2022-01-18T03:31:11Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z) - Multi-objective beetle antennae search algorithm [4.847470451539327]
The proposed multi-objective beetle antennae search algorithm is tested using four well-selected benchmark functions.
The results show that the proposed multi-objective beetle antennae search algorithm has higher computational efficiency with satisfactory accuracy.
arXiv Detail & Related papers (2020-02-24T06:34:32Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
Adaptivity is an important yet under-studied property in modern optimization theory.
Our algorithm is proved to achieve the best-available convergence for non-PL objectives simultaneously while outperforming existing algorithms for PL objectives.
arXiv Detail & Related papers (2020-02-13T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.