Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm
- URL: http://arxiv.org/abs/2310.07723v1
- Date: Mon, 4 Sep 2023 06:32:02 GMT
- Title: Equitable and Fair Performance Evaluation of Whale Optimization
Algorithm
- Authors: Bryar A. Hassan, Tarik A. Rashid, Aram Ahmed, Shko M. Qader, Jaffer
Majidpour, Mohmad Hussein Abdalla, Noor Tayfor, Hozan K. Hamarashid, Haval
Sidqi, Kaniaw A. Noori
- Abstract summary: It is essential that all algorithms are exhaustively, somewhat, and intelligently evaluated.
evaluating the effectiveness of optimization algorithms equitably and fairly is not an easy process for various reasons.
- Score: 4.0814527055582746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: It is essential that all algorithms are exhaustively, somewhat, and
intelligently evaluated. Nonetheless, evaluating the effectiveness of
optimization algorithms equitably and fairly is not an easy process for various
reasons. Choosing and initializing essential parameters, such as the size
issues of the search area for each method and the number of iterations required
to reduce the issues, might be particularly challenging. As a result, this
chapter aims to contrast the Whale Optimization Algorithm (WOA) with the most
recent algorithms on a selected set of benchmark problems with varying
benchmark function hardness scores and initial control parameters comparable
problem dimensions and search space. When solving a wide range of numerical
optimization problems with varying difficulty scores, dimensions, and search
areas, the experimental findings suggest that WOA may be statistically superior
or inferior to the preceding algorithms referencing convergence speed, running
time, and memory utilization.
Related papers
- A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Improving Performance Insensitivity of Large-scale Multiobjective
Optimization via Monte Carlo Tree Search [7.34812867861951]
We propose an evolutionary algorithm for solving large-scale multiobjective optimization problems based on Monte Carlo tree search.
The proposed method samples the decision variables to construct new nodes on the Monte Carlo tree for optimization and evaluation.
It selects nodes with good evaluation for further search to reduce the performance sensitivity caused by large-scale decision variables.
arXiv Detail & Related papers (2023-04-08T17:15:49Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Bayesian Algorithm Execution: Estimating Computable Properties of
Black-box Functions Using Mutual Information [78.78486761923855]
In many real world problems, we want to infer some property of an expensive black-box function f, given a budget of T function evaluations.
We present a procedure, InfoBAX, that sequentially chooses queries that maximize mutual information with respect to the algorithm's output.
On these problems, InfoBAX uses up to 500 times fewer queries to f than required by the original algorithm.
arXiv Detail & Related papers (2021-04-19T17:22:11Z) - PAMELI: A Meta-Algorithm for Computationally Expensive Multi-Objective
Optimization Problems [0.0]
The proposed algorithm is based on solving a set of surrogate problems defined by models of the real one.
Our algorithm also performs a meta-search for optimal surrogate models and navigation strategies for the optimization landscape.
arXiv Detail & Related papers (2021-03-19T11:18:03Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Data-driven Algorithm Design [21.39493074700162]
Data driven algorithm design is an important aspect of modern data science and algorithm design.
A small tweak to the parameters can cause a cascade of changes in the algorithm's behavior.
We provide strong computational and statistical performance guarantees for batch and online scenarios.
arXiv Detail & Related papers (2020-11-14T00:51:57Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Multi-objective beetle antennae search algorithm [4.847470451539327]
The proposed multi-objective beetle antennae search algorithm is tested using four well-selected benchmark functions.
The results show that the proposed multi-objective beetle antennae search algorithm has higher computational efficiency with satisfactory accuracy.
arXiv Detail & Related papers (2020-02-24T06:34:32Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.