論文の概要: Neural Message Passing on High Order Paths
- arxiv url: http://arxiv.org/abs/2002.10413v1
- Date: Mon, 24 Feb 2020 17:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 03:20:57.275604
- Title: Neural Message Passing on High Order Paths
- Title(参考訳): 高次経路におけるニューラルメッセージパッシング
- Authors: Daniel Flam-Shepherd, Tony Wu, Pascal Friederich and Alan Aspuru-Guzik
- Abstract要約: グラフニューラルネットを一般化してメッセージの送信と高次パスへの集約を行う。
これにより、情報はグラフの様々なレベルやサブ構造を伝播することができる。
- 参考スコア(独自算出の注目度): 4.273470365293033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural network have achieved impressive results in predicting molecular
properties, but they do not directly account for local and hidden structures in
the graph such as functional groups and molecular geometry. At each propagation
step, GNNs aggregate only over first order neighbours, ignoring important
information contained in subsequent neighbours as well as the relationships
between those higher order connections. In this work, we generalize graph
neural nets to pass messages and aggregate across higher order paths. This
allows for information to propagate over various levels and substructures of
the graph. We demonstrate our model on a few tasks in molecular property
prediction.
- Abstract(参考訳): グラフニューラルネットワークは分子特性の予測において素晴らしい結果を得たが、機能群や分子幾何学のようなグラフの局所構造や隠れ構造を直接考慮していない。
各伝播ステップでは、gnnは第1次隣人のみを集約し、それに続く隣人に含まれる重要な情報やそれらの上位接続間の関係を無視する。
本研究では,グラフニューラルネットを一般化し,メッセージの送信と高次パスへの集約を行う。
これにより、情報はグラフの様々なレベルやサブ構造を伝播することができる。
我々は分子特性予測のいくつかのタスクでモデルを示す。
関連論文リスト
- Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Simple and Efficient Heterogeneous Graph Neural Network [55.56564522532328]
不均一グラフニューラルネットワーク(HGNN)は、不均一グラフの豊富な構造的および意味的な情報をノード表現に埋め込む強力な能力を持つ。
既存のHGNNは、同種グラフ上のグラフニューラルネットワーク(GNN)から多くのメカニズム、特に注意機構と多層構造を継承する。
本稿では,これらのメカニズムを詳細に検討し,簡便かつ効率的なヘテロジニアスグラフニューラルネットワーク(SeHGNN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T10:01:46Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
グラフニューラルネットワーク(GNN)は、ノード機能を伝搬し、インタラクションを構築するためにメッセージパッシングパラダイムに依存している。
最近の研究は、異なるグラフ学習タスクはノード間の異なる範囲の相互作用を必要とすることを指摘している。
科学領域における2つの共通グラフ構築法、すなわち、emphK-nearest neighbor(KNN)グラフとemphfully-connected(FC)グラフについて検討する。
論文 参考訳(メタデータ) (2022-05-15T11:38:14Z) - Structure Enhanced Graph Neural Networks for Link Prediction [6.872826041648584]
リンク予測のための構造拡張グラフニューラルネットワーク(SEG)を提案する。
SEGは、ターゲットノードの周囲の位相情報を通常のGNNモデルに組み込む。
OGBリンク予測データセットの実験は、SEGが最先端の結果を達成することを示す。
論文 参考訳(メタデータ) (2022-01-14T03:49:30Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
典型的な好適なグラフでは、エッジを指向する可能性があり、エッジをそのまま扱うか、あるいは単純に非指向にするかは、GNNモデルの性能に大きな影響を与える。
そこで我々は,グラフの方向性を適応的に学習するモデルを開発し,ノード間の長距離相関を生かした。
論文 参考訳(メタデータ) (2021-11-19T08:54:21Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
薬物標的結合親和性予測に適したDiStance-aware Molecule graph Attention Network (S-MAN)を提案する。
そこで,我々はまず,構築したポケットリガンドグラフに位相構造と空間位置情報を統合する位置符号化機構を提案する。
また,エッジレベルアグリゲーションとノードレベルアグリゲーションを有するエッジノード階層的アグリゲーション構造を提案する。
論文 参考訳(メタデータ) (2020-12-17T17:44:01Z) - Higher-Order Explanations of Graph Neural Networks via Relevant Walks [3.1510406584101776]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを予測するための一般的なアプローチである。
本稿では,GNNを高次展開を用いて自然に説明できることを示す。
本稿では,テキストデータの感情分析,量子化学における構造・不適切な関係,画像分類に関する実践的な知見を抽出する。
論文 参考訳(メタデータ) (2020-06-05T17:59:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。