Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems
- URL: http://arxiv.org/abs/2106.05848v1
- Date: Thu, 3 Jun 2021 23:41:11 GMT
- Title: Deep Probabilistic Time Series Forecasting using Augmented Recurrent
Input for Dynamic Systems
- Authors: Haitao Liu, Changjun Liu, Xiaomo Jiang, Xudong Chen, Shuhua Yang,
Xiaofang Wang
- Abstract summary: We combine the advances in both deep generative models and state space model (SSM) to come up with a novel, data-driven deep probabilistic sequence model.
Specially, we follow the popular encoder-decoder generative structure to build the recurrent neural networks (RNN) assisted variational sequence model.
In order to alleviate the issue of inconsistency between training and predicting, we (i) propose using a hybrid output as input at next time step, which brings training and predicting into alignment.
- Score: 12.319812075685956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The demand of probabilistic time series forecasting has been recently raised
in various dynamic system scenarios, for example, system identification and
prognostic and health management of machines. To this end, we combine the
advances in both deep generative models and state space model (SSM) to come up
with a novel, data-driven deep probabilistic sequence model. Specially, we
follow the popular encoder-decoder generative structure to build the recurrent
neural networks (RNN) assisted variational sequence model on an augmented
recurrent input space, which could induce rich stochastic sequence dependency.
Besides, in order to alleviate the issue of inconsistency between training and
predicting as well as improving the mining of dynamic patterns, we (i) propose
using a hybrid output as input at next time step, which brings training and
predicting into alignment; and (ii) further devise a generalized
auto-regressive strategy that encodes all the historical dependencies at
current time step. Thereafter, we first investigate the methodological
characteristics of the proposed deep probabilistic sequence model on toy cases,
and then comprehensively demonstrate the superiority of our model against
existing deep probabilistic SSM models through extensive numerical experiments
on eight system identification benchmarks from various dynamic systems.
Finally, we apply our sequence model to a real-world centrifugal compressor
sensor data forecasting problem, and again verify its outstanding performance
by quantifying the time series predictive distribution.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
We introduce a low-rank structured variational autoencoder framework for nonlinear state-space graphical models.
We show that our approach consistently demonstrates the ability to learn a more predictive generative model.
arXiv Detail & Related papers (2024-03-03T02:19:49Z) - Time Series Forecasting with Ensembled Stochastic Differential Equations
Driven by L\'evy Noise [2.3076895420652965]
We use a collection of SDEs equipped with neural networks to predict long-term trend of noisy time series.
Our contributions are, first, we use the phase space reconstruction method to extract intrinsic dimension of the time series data.
Second, we explore SDEs driven by $alpha$-stable L'evy motion to model the time series data and solve the problem through neural network approximation.
arXiv Detail & Related papers (2021-11-25T16:49:01Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
We leverage advances in deep generative models and the concept of state space models to propose an adaptation of the recurrent neural network for time series forecasting.
Our model preserves the architectural workings of a recurrent neural network for which all relevant information is encapsulated in its hidden states, and this flexibility allows our model to be easily integrated into any deep architecture for sequential modelling.
arXiv Detail & Related papers (2021-04-26T01:43:43Z) - Dynamic Gaussian Mixture based Deep Generative Model For Robust
Forecasting on Sparse Multivariate Time Series [43.86737761236125]
We propose a novel generative model, which tracks the transition of latent clusters, instead of isolated feature representations.
It is characterized by a newly designed dynamic Gaussian mixture distribution, which captures the dynamics of clustering structures.
A structured inference network is also designed for enabling inductive analysis.
arXiv Detail & Related papers (2021-03-03T04:10:07Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Deep Neural Dynamic Bayesian Networks applied to EEG sleep spindles
modeling [0.0]
We propose a generative model for single-channel EEG that incorporates the constraints experts actively enforce during visual scoring.
We derive algorithms for exact, tractable inference as a special case of Generalized Expectation Maximization.
We validate the model on three public datasets and provide support that more complex models are able to surpass state-of-the-art detectors.
arXiv Detail & Related papers (2020-10-16T21:48:29Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Variational Hyper RNN for Sequence Modeling [69.0659591456772]
We propose a novel probabilistic sequence model that excels at capturing high variability in time series data.
Our method uses temporal latent variables to capture information about the underlying data pattern.
The efficacy of the proposed method is demonstrated on a range of synthetic and real-world sequential data.
arXiv Detail & Related papers (2020-02-24T19:30:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.