論文の概要: Automating Discovery of Dominance in Synchronous Computer-Mediated
Communication
- arxiv url: http://arxiv.org/abs/2002.10582v1
- Date: Mon, 24 Feb 2020 23:07:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-29 04:24:50.256378
- Title: Automating Discovery of Dominance in Synchronous Computer-Mediated
Communication
- Title(参考訳): 同期通信における支配の発見の自動化
- Authors: Jim Samuel, Richard Holowczak, Raquel Benbunan-Fich, Ilan Levine
- Abstract要約: 本研究では,仮想相互作用における支配のダイナミクスと特性について検討する。
優位性を示すコンピュータによる通信行動パターンを調査し,関連する変数を多数同定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advent of electronic interaction, dominance (or the assertion of
control over others) has acquired new dimensions. This study investigates the
dynamics and characteristics of dominance in virtual interaction by analyzing
electronic chat transcripts of groups solving a hidden profile task. We
investigate computer-mediated communication behavior patterns that demonstrate
dominance and identify a number of relevant variables. These indicators are
calculated with automatic and manual coding of text transcripts. A comparison
of both sets of variables indicates that automatic text analysis methods yield
similar conclusions than manual coding. These findings are encouraging to
advance research in text analysis methods in general, and in the study of
virtual team dominance in particular.
- Abstract(参考訳): 電子的相互作用の出現により、支配(あるいは他者に対する支配の主張)は新しい次元を得た。
本研究では,隠れプロファイルタスクを解くグループの電子チャット書き起こしを解析し,仮想インタラクションにおける優位性のダイナミクスと特徴について検討する。
優位性を示すコンピュータによる通信行動パターンを調査し,多くの変数を同定する。
これらのインジケータは、テキスト書き起こしの自動および手作業によるコーディングで計算される。
両変数の比較は、自動テキスト解析手法が手動のコーディングと類似した結論をもたらすことを示している。
これらの知見は,テキスト解析法全般,特に仮想チーム支配研究において研究を進めることを奨励している。
関連論文リスト
- Keystroke Dynamics Against Academic Dishonesty in the Age of LLMs [25.683026758476835]
本研究では,キーストロークダイナミックスを用いたボナフッ化物と補助筆記物の区別手法を提案する。
これを容易にするために、タスクを書くことに従事する個人のキーストロークパターンをキャプチャするデータセットが開発された。
改良されたTypeNetアーキテクチャを用いてトレーニングされた検出器は、条件固有のシナリオでは74.98%から85.72%、条件に依存しないシナリオでは52.24%から80.54%の精度を達成した。
論文 参考訳(メタデータ) (2024-06-21T17:51:26Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - Bodily Behaviors in Social Interaction: Novel Annotations and
State-of-the-Art Evaluation [0.0]
本稿では,社会相互作用に埋め込まれた複雑な身体行動の最初のアノテーションであるBBSIについて述べる。
心理学における過去の研究に基づいて,26時間の自発的な行動について手動で注釈を付けた。
我々は、人間の行動検出のための最先端のアプローチであるピラミッド拡張注意ネットワーク(PDAN)を適応する。
論文 参考訳(メタデータ) (2022-07-26T11:24:00Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - Analysis of Joint Speech-Text Embeddings for Semantic Matching [3.6423306784901235]
ペア音声と書き起こし入力の距離を最小化することにより,セマンティックマッチングのために訓練された共同音声テキスト埋め込み空間について検討する。
我々は,事前学習とマルチタスクの両方のシナリオを通じて,音声認識を組み込む方法を拡張した。
論文 参考訳(メタデータ) (2022-04-04T04:50:32Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Unsupervised Speech Representation Learning for Behavior Modeling using
Triplet Enhanced Contextualized Networks [28.957236790411585]
本研究では,対話における人間の行動の定常的特性を利用して,音声から行動情報を抽出する表現学習手法を提案する。
本稿では,エンコーダ・デコーダをベースとしたDeep Contextualized Network (DCN) と,動作コンテキストをキャプチャするTriplet-Enhanced DCN (TE-DCN) フレームワークを提案する。
論文 参考訳(メタデータ) (2021-04-01T22:44:23Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。