論文の概要: Keystroke Dynamics Against Academic Dishonesty in the Age of LLMs
- arxiv url: http://arxiv.org/abs/2406.15335v1
- Date: Fri, 21 Jun 2024 17:51:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-24 12:43:51.101773
- Title: Keystroke Dynamics Against Academic Dishonesty in the Age of LLMs
- Title(参考訳): LLM時代の学業不正直に対するキーストロークダイナミクス
- Authors: Debnath Kundu, Atharva Mehta, Rajesh Kumar, Naman Lal, Avinash Anand, Apoorv Singh, Rajiv Ratn Shah,
- Abstract要約: 本研究では,キーストロークダイナミックスを用いたボナフッ化物と補助筆記物の区別手法を提案する。
これを容易にするために、タスクを書くことに従事する個人のキーストロークパターンをキャプチャするデータセットが開発された。
改良されたTypeNetアーキテクチャを用いてトレーニングされた検出器は、条件固有のシナリオでは74.98%から85.72%、条件に依存しないシナリオでは52.24%から80.54%の精度を達成した。
- 参考スコア(独自算出の注目度): 25.683026758476835
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The transition to online examinations and assignments raises significant concerns about academic integrity. Traditional plagiarism detection systems often struggle to identify instances of intelligent cheating, particularly when students utilize advanced generative AI tools to craft their responses. This study proposes a keystroke dynamics-based method to differentiate between bona fide and assisted writing within academic contexts. To facilitate this, a dataset was developed to capture the keystroke patterns of individuals engaged in writing tasks, both with and without the assistance of generative AI. The detector, trained using a modified TypeNet architecture, achieved accuracies ranging from 74.98% to 85.72% in condition-specific scenarios and from 52.24% to 80.54% in condition-agnostic scenarios. The findings highlight significant differences in keystroke dynamics between genuine and assisted writing. The outcomes of this study enhance our understanding of how users interact with generative AI and have implications for improving the reliability of digital educational platforms.
- Abstract(参考訳): オンライン試験と課題への移行は、学術的完全性に関する重要な懸念を提起する。
従来の盗作検出システムは、知的不正行為の事例を特定するのに苦労することが多い。
本研究は, キーストローク動的手法を用いて, 学術的文脈におけるボナ・フェイドと補助的な筆記を区別する手法を提案する。
これを容易にするために、データセットは、生成AIの助けなしに、タスクを書くことに従事する個人のキーストロークパターンをキャプチャするために開発された。
改良されたTypeNetアーキテクチャを用いてトレーニングされた検出器は、条件固有のシナリオでは74.98%から85.72%、条件に依存しないシナリオでは52.24%から80.54%の精度を達成した。
この結果から,キーストロークの動的特性に有意な差が認められた。
本研究の結果は,ユーザが生成型AIとどのように相互作用するかの理解を深め,デジタル教育プラットフォームの信頼性向上に寄与する。
関連論文リスト
- Hidding the Ghostwriters: An Adversarial Evaluation of AI-Generated
Student Essay Detection [29.433764586753956]
大規模言語モデル(LLM)は、テキスト生成タスクにおいて顕著な機能を示した。
これらのモデルの利用には、盗作行為、偽ニュースの普及、教育演習における問題など、固有のリスクが伴う。
本稿では,AI生成した学生エッセイデータセットであるAIG-ASAPを構築し,このギャップを埋めることを目的とする。
論文 参考訳(メタデータ) (2024-02-01T08:11:56Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - Enhancing HOI Detection with Contextual Cues from Large Vision-Language Models [56.257840490146]
ConCueは、HOI検出における視覚的特徴抽出を改善するための新しいアプローチである。
コンテクストキューをインスタンスと相互作用検出器の両方に統合するマルチトウワーアーキテクチャを用いたトランスフォーマーベースの特徴抽出モジュールを開発した。
論文 参考訳(メタデータ) (2023-11-26T09:11:32Z) - Analysis of the User Perception of Chatbots in Education Using A Partial
Least Squares Structural Equation Modeling Approach [0.0]
オプティミズム、イノベーティブネス、不快感、不安、透明性、倫理、相互作用、エンゲージメント、正確さといった主要な行動関連側面について研究した。
その結果、最適性と革新性は、知覚的使用覚(PEOU)と知覚的有用性(PU)に正の相関があることが判明した。
論文 参考訳(メタデータ) (2023-11-07T00:44:56Z) - HowkGPT: Investigating the Detection of ChatGPT-generated University
Student Homework through Context-Aware Perplexity Analysis [13.098764928946208]
HowkGPTは学術的な課題と付随するメタデータのデータセットの上に構築されている。
生徒とChatGPTが生成する応答の難易度スコアを計算する。
さらに、カテゴリ固有のしきい値を定義することで分析を洗練させる。
論文 参考訳(メタデータ) (2023-05-26T11:07:25Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - CORE: A Retrieve-then-Edit Framework for Counterfactual Data Generation [91.16551253297588]
Counterfactual Generation via Retrieval and Editing (CORE) は、トレーニングのための多様な反事実摂動を生成するための検索強化された生成フレームワークである。
COREはまず、学習されたバイエンコーダを用いて、タスク関連未ラベルテキストコーパス上で密集した検索を行う。
COREはこれらを、反ファクト編集のために、数ショットの学習機能を備えた大規模な言語モデルへのプロンプトに組み込む。
論文 参考訳(メタデータ) (2022-10-10T17:45:38Z) - Toward Educator-focused Automated Scoring Systems for Reading and
Writing [0.0]
本稿では,データとラベルの可用性,信頼性と拡張性,ドメインスコアリング,プロンプトとソースの多様性,伝達学習といった課題に対処する。
モデルトレーニングコストを増大させることなく、エッセイの長さを重要な特徴として保持する技術を採用している。
論文 参考訳(メタデータ) (2021-12-22T15:44:30Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
スコアリングモデルの驚くべき逆方向の脆さの原因について検討する。
のモデルとして訓練されているにもかかわらず、単語の袋のように振る舞うことを示唆している。
高い精度で試料を発生させる過敏性と過敏性を検出できる検出ベース保護モデルを提案する。
論文 参考訳(メタデータ) (2021-09-24T03:49:38Z) - Evaluation Toolkit For Robustness Testing Of Automatic Essay Scoring
Systems [64.4896118325552]
モデル逆算評価スキームと関連するメトリクスを用いて、現状のAESモデルを評価する。
AESモデルは非常に過大評価されていることがわかった。質問の話題に関係のない内容の重い修正(25%まで)でさえ、モデルが生み出すスコアを低下させることはない。
論文 参考訳(メタデータ) (2020-07-14T03:49:43Z) - Temporal Embeddings and Transformer Models for Narrative Text
Understanding [72.88083067388155]
キャラクタ関係モデリングのための物語テキスト理解のための2つのアプローチを提案する。
これらの関係の時間的進化は動的単語埋め込みによって説明され、時間とともに意味的変化を学ぶように設計されている。
最新の変換器モデルBERTに基づく教師付き学習手法を用いて文字間の静的な関係を検出する。
論文 参考訳(メタデータ) (2020-03-19T14:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。