Experimental Test of Tight State-Independent Preparation Uncertainty
Relations for Qubits
- URL: http://arxiv.org/abs/2002.10725v2
- Date: Wed, 5 Aug 2020 14:35:39 GMT
- Title: Experimental Test of Tight State-Independent Preparation Uncertainty
Relations for Qubits
- Authors: Stephan Sponar and Armin Danner and Kazuma Obigane and Simon Hack and
Yuji Hasegawa
- Abstract summary: We present a neutron optical test of the tight state preparation uncertainty relations for non-independent Pauli spin states with mixed spin states.
The final results, obtained in a polarimetric experiment, reproduce the theoretical predictions evidently for arbitrary initial states variable degree polarization.
- Score: 1.5749416770494706
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The well-known Robertson-Schroedinger uncertainty relations miss an
irreducible lower bound. This is widely attributed to the lower bound's
state-dependence. Therefore, Abbott \emph{et al.} introduced a general approach
to derive tight state-independent uncertainty relations for qubit measurements
[Mathematics 4, 8 (2016)]. The relations are expressed in two measures of
uncertainty, which are standard deviation and entropy, both functions of the
expectation value. Here, we present a neutron optical test of the tight
state-independent preparation uncertainty relations for non-commuting Pauli
spin observables with mixed spin states. The final results, obtained in a
polarimetric experiment, reproduce the theoretical predictions evidently for
arbitrary initial states of variable degree of polarization.
Related papers
- Measuring the Evolution of Entanglement in Compton Scattering [101.11630543545151]
The behavior of quantum entanglement during scattering is identical to the behavior of initially classically correlated photons up to a constant factor equal to two.
Our dedicated experiment with photons confirms these results and explains the "Puzzle of Decoherence" observed recently.
arXiv Detail & Related papers (2024-06-20T14:21:23Z) - Uncertainty relations based on state-dependent norm of commutator [0.0]
We introduce two uncertainty relations based on the state-dependent norm of commutators, utilizing generalizations of the B"ottcher-Wenzel inequality.
The first relation is mathematically proven, while the second, tighter relation is strongly supported by numerical evidence.
arXiv Detail & Related papers (2024-06-18T05:16:45Z) - Testing trajectory-based determinism via time probability distributions [44.99833362998488]
Bohmian mechanics (BM) has inherited more predictive power than quantum mechanics (QM)
We introduce a prescription for constructing a flight-time probability distribution within generic trajectory-equipped theories.
We derive probability distributions that are unreachable by QM.
arXiv Detail & Related papers (2024-04-15T11:36:38Z) - Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Measurement incompatibility is strictly stronger than disturbance [44.99833362998488]
Heisenberg argued that measurements irreversibly alter the state of the system on which they are acting, causing an irreducible disturbance on subsequent measurements.
This article shows that measurement incompatibility is indeed a sufficient condition for irreversibility of measurement disturbance.
However, we exhibit a toy theory, termed the minimal classical theory (MCT), that is a counterexample for the converse implication.
arXiv Detail & Related papers (2023-05-26T13:47:00Z) - Experimental demonstration of optimal unambiguous two-out-of-four
quantum state elimination [52.77024349608834]
A core principle of quantum theory is that non-orthogonal quantum states cannot be perfectly distinguished with single-shot measurements.
Here we implement a quantum state elimination measurement which unambiguously rules out two of four pure, non-orthogonal quantum states.
arXiv Detail & Related papers (2022-06-30T18:00:01Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
We argue that the aleatoric uncertainty is an inherent attribute of the data and can only be correctly estimated with an unbiased oracle model.
We propose a new sampling and selection strategy at train time to approximate the oracle model for aleatoric uncertainty estimation.
Our results show that our solution achieves both accurate deterministic results and reliable uncertainty estimation.
arXiv Detail & Related papers (2021-11-22T08:54:10Z) - Experimental test of the majorization uncertainty relation with mixed
states [6.613272059966484]
The uncertainty relation lies at the heart of quantum theory and behaves as a non-classical constraint on the indeterminacies of incompatible observables in a system.
In this work we test the novel majorization uncertainty relations of three incompatible observables using a series of mixed states with adjustable mixing degrees.
arXiv Detail & Related papers (2021-04-07T01:18:32Z) - Direct experimental test of commutation relation via weak value [0.0]
We present a novel scheme to test the canonical commutation relation between two dichotomic observables.
The imaginary part of a suitably formulated weak value enables this direct test.
Experiment is realized using a newly developed technique in our neutron interferometric setup.
arXiv Detail & Related papers (2020-12-15T09:42:28Z) - A Universal Formulation of Uncertainty Relation for Error and
Disturbance [0.9479435599284545]
We present a universal formulation of uncertainty relation valid for any conceivable quantum measurement.
Owing to its simplicity and operational tangibility, our general relation is also experimentally verifiable.
arXiv Detail & Related papers (2020-04-13T17:57:41Z) - Geometric Formulation of Universally Valid Uncertainty Relation for
Error [1.696974372855528]
We present a new geometric formulation of uncertainty relation valid for any quantum measurements of statistical nature.
Owing to its simplicity and tangibility, our relation is universally valid and experimentally viable.
arXiv Detail & Related papers (2020-02-10T18:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.