論文の概要: Towards Scalable Bosonic Quantum Error Correction
- arxiv url: http://arxiv.org/abs/2002.11008v3
- Date: Mon, 1 Jun 2020 12:40:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 23:54:51.083830
- Title: Towards Scalable Bosonic Quantum Error Correction
- Title(参考訳): スケーラブルなボソニック量子誤差補正に向けて
- Authors: Barbara M. Terhal, Jonathan Conrad, Christophe Vuillot
- Abstract要約: 有限列GKPアンシラ量子ビットを用いた繰り返しGKP誤差の復号化に関する新しい結果を示す。
我々は、GKP量子ビット間のCZゲートを実現するための回路QED手法について議論し、スケーラブルな超伝導表面コードアーキテクチャにおいて、GKPおよび正規キュービットをビルディングブロックとして使用する際の異なるシナリオについて論じる。
- 参考スコア(独自算出の注目度): 1.6328866317851185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We review some of the recent efforts in devising and engineering bosonic
qubits for superconducting devices, with emphasis on the
Gottesman-Kitaev-Preskill (GKP) qubit. We present some new results on decoding
repeated GKP error correction using finitely-squeezed GKP ancilla qubits,
exhibiting differences with previously studied stochastic error models. We
discuss circuit-QED ways to realize CZ gates between GKP qubits and we discuss
different scenario's for using GKP and regular qubits as building blocks in a
scalable superconducting surface code architecture.
- Abstract(参考訳): 本稿では,超伝導デバイス用ボソニック量子ビットの開発と工学における最近の取り組みについて,GKP(Gottesman-Kitaev-Preskill)量子ビットを中心に概説する。
本稿では,有限スキーズgkpアンシラ量子ビットを用いた繰り返しgkp誤り訂正法について,従来研究した確率的誤りモデルとの違いを示す新しい結果を示す。
我々は、GKP量子ビット間のCZゲートを実現するための回路QED手法について議論し、スケーラブルな超伝導表面コードアーキテクチャにおいて、GKPおよび正規キュービットをビルディングブロックとして使用する際の異なるシナリオについて論じる。
関連論文リスト
- Interfacing Gottesman-Kitaev-Preskill Qubits to Quantum Memories [3.152708951218456]
共振器を介した制御変位ゲートに基づく量子メモリとGKP量子ビット状態のインタフェースを提案する。
我々は、このプロトコルを拡張して、Acillary optical quadrature-squeezed light の要求を回避することにより、GKPクラスター状態の生成を実証する。
論文 参考訳(メタデータ) (2024-06-06T17:23:54Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
我々は、支配的なノイズを既知の場所での消去に効率よく変換することで、消去量子ビットの考え方を利用する。
消去量子ビットと最近導入されたFloquet符号に基づくQECスキームの提案と最適化を行う。
以上の結果から, 消去量子ビットに基づくQECスキームは, より複雑であるにもかかわらず, 標準手法よりも著しく優れていることが示された。
論文 参考訳(メタデータ) (2023-12-21T17:40:18Z) - Advances in Bosonic Quantum Error Correction with
Gottesman-Kitaev-Preskill Codes: Theory, Engineering and Applications [4.656672793044798]
Gottesman-Kitaev-Preskill (GKP) 符号は、量子誤り訂正の破局点に達した最初のものの一つである。
GKP符号は量子計算における約束によって広く認識されている。
本稿では,GKPコードの基本動作機構,性能評価,多くの応用について概説する。
論文 参考訳(メタデータ) (2023-08-05T16:10:47Z) - Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla [0.6802401545890963]
Gottesman-Kitaev-Preskill (GKP)符号は位相空間の小さな変位誤差を補正するために提案されている。
位相空間のノイズが偏った場合、二乗格子GKP符号はXZZX曲面符号または繰り返し符号でアシラリー化することができる。
本稿では,GKP繰り返し符号と物理アンシラリーGKP量子ビットの重み付き雑音補正性能について検討する。
論文 参考訳(メタデータ) (2023-08-03T06:14:43Z) - Robust suppression of noise propagation in GKP error-correction [0.0]
最近報告されたGKP量子ビットの生成と誤り訂正は、量子コンピューティングの将来に大きな期待を抱いている。
プロトコルパラメータを最適化する効率的な数値計算法を開発した。
提案手法は,GKP量子ビットを用いたフォールトトレラント量子計算への主な障害を回避している。
論文 参考訳(メタデータ) (2023-02-23T15:21:50Z) - Deep Quantum Error Correction [73.54643419792453]
量子誤り訂正符号(QECC)は、量子コンピューティングのポテンシャルを実現するための鍵となる要素である。
本研究では,新しいエンペンド・ツー・エンドの量子誤りデコーダを効率的に訓練する。
提案手法は,最先端の精度を実現することにより,QECCのニューラルデコーダのパワーを実証する。
論文 参考訳(メタデータ) (2023-01-27T08:16:26Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
量子ハードウェアプラットフォーム上でのコヒーレントエラーを, サンプルユーザアプリケーションとして, 横フィールドIsing Model Hamiltonianを用いて検討した。
プロセッサ上の物理位置の異なる量子ビット群に対する、日中および日中キュービット校正ドリフトと量子回路配置の影響を同定する。
また,これらの測定値が,これらの種類の誤差をよりよく理解し,量子計算の正確性を評価するための取り組みを改善する方法についても論じる。
論文 参考訳(メタデータ) (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
テレポーテーションに基づく誤り訂正回路を用いて、回転対称符号の誤り訂正能力を解析する。
マイクロ波光学における現在達成可能な測定効率により, ボソニック回転符号の破壊ポテンシャルは著しく低下することが判明した。
論文 参考訳(メタデータ) (2021-08-02T16:12:13Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
本研究では, 平面GKP符号の有効利用, すなわち, 素二次元キュービットの代わりにボソニックGKP量子ビットからなる曲面符号を提案する。
論理的故障率の低い$p_L 10-7$は、適度なハードウェア要件で達成可能であることを示す。
論文 参考訳(メタデータ) (2021-03-11T23:07:52Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
本稿では、電波トラップで閉じ込められた1本のイオン列をベースとした量子計算アーキテクチャにおけるクロストーク誤差の研究を行い、個別に調整されたレーザービームで操作する。
この種の誤差は、理想的には、異なるアクティブな量子ビットのセットで処理される単一量子ゲートと2量子ビットの量子ゲートが適用されている間は、未修正のままであるオブザーバー量子ビットに影響を及ぼす。
我々は,第1原理からクロストーク誤りを微視的にモデル化し,コヒーレント対非コヒーレントなエラーモデリングの重要性を示す詳細な研究を行い,ゲートレベルでクロストークを積極的に抑制するための戦略について議論する。
論文 参考訳(メタデータ) (2020-12-21T14:20:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。