Towards Scalable Bosonic Quantum Error Correction
- URL: http://arxiv.org/abs/2002.11008v3
- Date: Mon, 1 Jun 2020 12:40:53 GMT
- Title: Towards Scalable Bosonic Quantum Error Correction
- Authors: Barbara M. Terhal, Jonathan Conrad, Christophe Vuillot
- Abstract summary: We present some new results on decoding repeated GKP error using finitely-squeezed GKP ancilla qubits.
We discuss circuit-QED ways to realize CZ gates between GKP qubits and we discuss different scenario's for using GKP and regular qubits as building blocks in a scalable superconducting surface code architecture.
- Score: 1.6328866317851185
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We review some of the recent efforts in devising and engineering bosonic
qubits for superconducting devices, with emphasis on the
Gottesman-Kitaev-Preskill (GKP) qubit. We present some new results on decoding
repeated GKP error correction using finitely-squeezed GKP ancilla qubits,
exhibiting differences with previously studied stochastic error models. We
discuss circuit-QED ways to realize CZ gates between GKP qubits and we discuss
different scenario's for using GKP and regular qubits as building blocks in a
scalable superconducting surface code architecture.
Related papers
- Interfacing Gottesman-Kitaev-Preskill Qubits to Quantum Memories [3.152708951218456]
We propose an interface between quantum memories and GKP qubit states based on a cavity-mediated controlled displacement gate.
We extend this protocol to demonstrate the creation of GKP cluster states by avoiding the requirement of ancillary optical quadrature-squeezed light.
arXiv Detail & Related papers (2024-06-06T17:23:54Z) - Fault-tolerant quantum architectures based on erasure qubits [49.227671756557946]
We exploit the idea of erasure qubits, relying on an efficient conversion of the dominant noise into erasures at known locations.
We propose and optimize QEC schemes based on erasure qubits and the recently-introduced Floquet codes.
Our results demonstrate that, despite being slightly more complex, QEC schemes based on erasure qubits can significantly outperform standard approaches.
arXiv Detail & Related papers (2023-12-21T17:40:18Z) - Advances in Bosonic Quantum Error Correction with
Gottesman-Kitaev-Preskill Codes: Theory, Engineering and Applications [4.656672793044798]
Gottesman-Kitaev-Preskill (GKP) codes are among the first to reach a break-even point for quantum error correction.
GKP codes are widely recognized for their promise in quantum computation.
This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes.
arXiv Detail & Related papers (2023-08-05T16:10:47Z) - Correcting biased noise using Gottesman-Kitaev-Preskill repetition code
with noisy ancilla [0.6802401545890963]
Gottesman-Kitaev-Preskill (GKP) code is proposed to correct small displacement error in phase space.
If noise in phase space is biased, square-lattice GKP code can be ancillaryd with XZZX surface code or repetition code.
We study the performance of GKP repetition codes with physical ancillary GKP qubits in correcting biased noise.
arXiv Detail & Related papers (2023-08-03T06:14:43Z) - Robust suppression of noise propagation in GKP error-correction [0.0]
Recently reported generation and error-correction of GKP qubits holds great promise for the future of quantum computing.
We develop efficient numerical methods to optimize our protocol parameters.
Our approach circumvents the main roadblock towards fault-tolerant quantum computation with GKP qubits.
arXiv Detail & Related papers (2023-02-23T15:21:50Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Performance of teleportation-based error correction circuits for bosonic
codes with noisy measurements [58.720142291102135]
We analyze the error-correction capabilities of rotation-symmetric codes using a teleportation-based error-correction circuit.
We find that with the currently achievable measurement efficiencies in microwave optics, bosonic rotation codes undergo a substantial decrease in their break-even potential.
arXiv Detail & Related papers (2021-08-02T16:12:13Z) - Low overhead fault-tolerant quantum error correction with the
surface-GKP code [60.44022726730614]
We propose a highly effective use of the surface-GKP code, i.e., the surface code consisting of bosonic GKP qubits instead of bare two-dimensional qubits.
We show that a low logical failure rate $p_L 10-7$ can be achieved with moderate hardware requirements.
arXiv Detail & Related papers (2021-03-11T23:07:52Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.