Interfacing Gottesman-Kitaev-Preskill Qubits to Quantum Memories
- URL: http://arxiv.org/abs/2406.04275v2
- Date: Fri, 18 Oct 2024 00:21:02 GMT
- Title: Interfacing Gottesman-Kitaev-Preskill Qubits to Quantum Memories
- Authors: Prajit Dhara, Liang Jiang, Saikat Guha,
- Abstract summary: We propose an interface between quantum memories and GKP qubit states based on a cavity-mediated controlled displacement gate.
We extend this protocol to demonstrate the creation of GKP cluster states by avoiding the requirement of ancillary optical quadrature-squeezed light.
- Score: 3.152708951218456
- License:
- Abstract: Gottesman-Kitaev-Preskill (GKP) states have been demonstrated to pose significant advantages when utilized for fault-tolerant all optical continuous-variable quantum computing as well as for quantum communications links for entanglement distribution. However interfacing these systems to long-lived solid-state quantum memories has remained an open problem. Here we propose an interface between quantum memories and GKP qubit states based on a cavity-mediated controlled displacement gate. We characterize the quality of memory-GKP entanglement as a function of cavity parameters suggesting optimal regimes of operation for high-quality state transfer between either qubit states. We further extend this protocol to demonstrate the creation of GKP cluster states by avoiding the requirement of ancillary optical quadrature-squeezed light. Utilizing post-selected entanglement swapping operations for GKP qubits, we demonstrate the utility of our protocol for high-rate entanglement generation between quantum memories. Extensions and derivatives of our proposal could enable a wide variety of applications by utilizing the operational trade-offs for qubits encoded in memory and in the GKP basis.
Related papers
- Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Propagating Gottesman-Kitaev-Preskill states encoded in an optical
oscillator [0.3901201146779002]
A logical qubit called Gottesman-Kitaev-Preskill (GKP) qubit is efficient for mitigating errors in a quantum computer.
GKP qubits have been only demonstrated at mechanical and microwave frequency in a highly nonlinear physical system.
In this work, we realize a GKP state in propagating light at the telecommunication wavelength and demonstrate homodyne meausurements on the GKP states.
arXiv Detail & Related papers (2023-09-05T15:21:20Z) - Advances in Bosonic Quantum Error Correction with
Gottesman-Kitaev-Preskill Codes: Theory, Engineering and Applications [4.656672793044798]
Gottesman-Kitaev-Preskill (GKP) codes are among the first to reach a break-even point for quantum error correction.
GKP codes are widely recognized for their promise in quantum computation.
This review focuses on the basic working mechanism, performance characterization, and the many applications of GKP codes.
arXiv Detail & Related papers (2023-08-05T16:10:47Z) - Error-corrected quantum repeaters with GKP qudits [1.1279808969568252]
The Gottesman-Kitaev-Preskill (GKP) code offers the possibility to encode higher-dimensional qudits into individual bosonic modes.
The GKP code has found recent applications in theoretical investigations of quantum communication protocols.
arXiv Detail & Related papers (2023-03-28T15:04:06Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - High-fidelity quantum gates for OAM qudits on quantum memory [0.0]
We propose a method for implementing single-qudit gates for qudits based on light modes with orbital angular momentum.
We show that the considered gates provide an extremely high level of fidelity of single-qudit transformations.
arXiv Detail & Related papers (2021-05-25T19:13:27Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - All-Optical Long-Distance Quantum Communication with
Gottesman-Kitaev-Preskill qubits [0.0]
Quantum repeaters are a promising platform for realizing long-distance quantum communication.
In this work, we consider implementing a quantum repeater protocol using Gottesman-Kitaev-Preskill qubits.
arXiv Detail & Related papers (2020-11-30T15:14:34Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.