論文の概要: Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images
- arxiv url: http://arxiv.org/abs/2002.11509v1
- Date: Wed, 26 Feb 2020 14:10:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 15:35:08.497542
- Title: Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images
- Title(参考訳): 磁気共鳴画像における脳腫瘍の関心領域の同定
- Authors: Fateme Mostafaie, Reihaneh Teimouri, Zahra Nabizadeh, Nader Karimi,
Shadrokh Samavi
- Abstract要約: そこで我々は,腫瘍周辺で最小の境界ボックスを見つけるために,軽量計算量で高速かつ自動化された手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
- 参考スコア(独自算出の注目度): 8.75217589103206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Glioma is a common type of brain tumor, and accurate detection of it plays a
vital role in the diagnosis and treatment process. Despite advances in medical
image analyzing, accurate tumor segmentation in brain magnetic resonance (MR)
images remains a challenge due to variations in tumor texture, position, and
shape. In this paper, we propose a fast, automated method, with light
computational complexity, to find the smallest bounding box around the tumor
region. This region-of-interest can be used as a preprocessing step in training
networks for subregion tumor segmentation. By adopting the outputs of this
algorithm, redundant information is removed; hence the network can focus on
learning notable features related to subregions' classes. The proposed method
has six main stages, in which the brain segmentation is the most vital step.
Expectation-maximization (EM) and K-means algorithms are used for brain
segmentation. The proposed method is evaluated on the BraTS 2015 dataset, and
the average gained DICE score is 0.73, which is an acceptable result for this
application.
- Abstract(参考訳): グリオーマは脳腫瘍の一般的なタイプであり、その正確な検出は診断および治療プロセスにおいて重要な役割を果たす。
医用画像解析の進歩にもかかわらず、脳磁気共鳴(MR)画像における正確な腫瘍セグメンテーションは、腫瘍のテクスチャ、位置、形状の変化のために依然として課題である。
本稿では,腫瘍領域周辺で最小のバウンディングボックスを見つけるための,軽量計算複雑性を持つ高速で自動的な手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
このアルゴリズムの出力を採用することで冗長な情報が取り除かれるため、ネットワークはサブリージョンのクラスに関連する注目すべき特徴を学習することに集中することができる。
提案手法は,脳の分節が最も重要なステップである6つの主要段階を有する。
期待最大化(EM)とK平均アルゴリズムは脳のセグメンテーションに使用される。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
関連論文リスト
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
本研究は, 脊椎腫瘍の領域分割と局所化をAIアプローチで自動化することを目的とした, 新たなデータ拡張手法を提案する。
畳み込みニューラルネットワーク(CNN)アーキテクチャは、腫瘍の分類に用いられている。3次元の椎骨分割とラベル付け技術は、腰椎の腫瘍の正確な位置を特定するのに役立つ。
その結果, 腫瘍分節の99%の精度, 腫瘍分類の98%の精度, 腫瘍局在の99%の精度が得られた。
論文 参考訳(メタデータ) (2024-05-07T05:55:50Z) - Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction [0.0]
脳腫瘍は、死亡率80%を超える最も致命的ながんの1つである。
医学的分析では、脳腫瘍の手動アノテーションとセグメンテーションは複雑な作業である。
本稿では,データ前処理中に実装された関心領域検出アルゴリズムを提案する。
ソフトアテンションを持つ完全畳み込みオートエンコーダは、異なる脳MRIをセグメント化する。
論文 参考訳(メタデータ) (2023-12-31T20:42:52Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
脳腫瘍は、個人の寿命を減少させる深刻な健康上の合併症の1つである。
脳腫瘍のタイムリーな検出と予測は、脳腫瘍による死亡率の予防に役立つ。
ディープラーニングベースのアプローチは、自動化バイオメディカル画像探索ツールを開発するための有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-16T14:06:45Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Triplet Contrastive Learning for Brain Tumor Classification [99.07846518148494]
本稿では,脳腫瘍の深層埋め込みを直接学習する手法を提案する。
本手法は,27種類の腫瘍群からなる広範囲な脳腫瘍データセットを用いて評価し,そのうち13種は稀である。
論文 参考訳(メタデータ) (2021-08-08T11:26:34Z) - QuickTumorNet: Fast Automatic Multi-Class Segmentation of Brain Tumors [0.0]
3D MRIボリュームからの脳腫瘍の手動分割は、時間のかかる作業です。
私たちのモデルであるQuickTumorNetは、高速で信頼性があり、正確な脳腫瘍セグメンテーションを示しました。
論文 参考訳(メタデータ) (2020-12-22T23:16:43Z) - Unsupervised Region-based Anomaly Detection in Brain MRI with
Adversarial Image Inpainting [4.019851137611981]
本稿では,T1強調MRIのための完全自動非教師付き印字型脳腫瘍分割システムを提案する。
まず、Deep Convolutional Neural Network(DCNN)をトレーニングし、行方不明の健常な脳の領域を再構築する。
提案システムでは, 種々の腫瘍と抽象腫瘍を分離し, 平均偏差Diceスコアが0.176, 0.771, 標準偏差Diceスコアが得られた。
論文 参考訳(メタデータ) (2020-10-05T12:13:44Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。