論文の概要: Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction
- arxiv url: http://arxiv.org/abs/2401.00587v2
- Date: Thu, 14 Mar 2024 19:02:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 22:33:38.352740
- Title: Brain Tumor Segmentation Based on Deep Learning, Attention Mechanisms, and Energy-Based Uncertainty Prediction
- Title(参考訳): 深層学習, 注意機構, エネルギーによる不確かさ予測に基づく脳腫瘍の分節
- Authors: Zachary Schwehr, Sriman Achanta,
- Abstract要約: 脳腫瘍は、死亡率80%を超える最も致命的ながんの1つである。
医学的分析では、脳腫瘍の手動アノテーションとセグメンテーションは複雑な作業である。
本稿では,データ前処理中に実装された関心領域検出アルゴリズムを提案する。
ソフトアテンションを持つ完全畳み込みオートエンコーダは、異なる脳MRIをセグメント化する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Brain tumors are one of the deadliest forms of cancer with a mortality rate of over 80%. A quick and accurate diagnosis is crucial to increase the chance of survival. However, in medical analysis, the manual annotation and segmentation of a brain tumor can be a complicated task. Multiple MRI modalities are typically analyzed as they provide unique information regarding the tumor regions. Although these MRI modalities are helpful for segmenting gliomas, they tend to increase overfitting and computation. This paper proposes a region of interest detection algorithm that is implemented during data preprocessing to locate salient features and remove extraneous MRI data. This decreases the input size, allowing for more aggressive data augmentations and deeper neural networks. Following the preprocessing of the MRI modalities, a fully convolutional autoencoder with soft attention segments the different brain MRIs. When these deep learning algorithms are implemented in practice, analysts and physicians cannot differentiate between accurate and inaccurate predictions. Subsequently, test time augmentations and an energy-based model were used for voxel-based uncertainty predictions. Experimentation was conducted on the BraTS benchmarks and achieved state-of-the-art segmentation performance. Additionally, qualitative results were used to assess the segmentation models and uncertainty predictions.
- Abstract(参考訳): 脳腫瘍は、死亡率80%を超える最も致命的ながんの1つである。
迅速かつ正確な診断は生存可能性を高めるために不可欠である。
しかし、医学的な分析では、脳腫瘍の手動アノテーションとセグメンテーションは複雑な作業である可能性がある。
腫瘍領域に関するユニークな情報を提供するため、複数のMRIモダリティが典型的に分析される。
これらのMRIモダリティはグリオーマの分画に有用であるが、オーバーフィッティングや計算量を増加させる傾向にある。
本稿では,データ前処理中に実装された関心領域検出アルゴリズムを提案する。
これにより入力サイズが小さくなり、より積極的なデータ拡張とより深いニューラルネットワークが可能になる。
MRIモダリティの事前処理の後、ソフトアテンションを持つ完全畳み込みオートエンコーダは、異なる脳MRIを分割する。
これらのディープラーニングアルゴリズムが実際に実装されている場合、アナリストや医師は正確な予測と不正確な予測を区別することはできない。
その後、ボクセルに基づく不確実性予測のために、試験時間増強とエネルギーベースモデルが使用された。
実験はBraTSベンチマークで行われ、最先端のセグメンテーション性能を達成した。
さらに、セグメンテーションモデルと不確実性予測を評価するために定性的な結果が用いられた。
関連論文リスト
- Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
脳腫瘍のセグメンテーションは、医療画像解析において重要な課題であり、脳腫瘍患者の診断と治療計画を支援する。
様々な深層学習技術がこの分野で大きな進歩を遂げてきたが、脳腫瘍形態の複雑で変動的な性質のため、精度の面ではまだ限界に直面している。
本稿では,脳腫瘍の正確なセグメンテーションにおける課題を解決するために,新しいハイブリッドマルチヘッド注意型U-Netアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:46:26Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
脳腫瘍は世界で最も致命的ながんの1つであり、子供や高齢者に非常に多い。
本稿では,MRI脳腫瘍グレーディングの課題に対処するために,新たな多モード学習法を提案する。
論文 参考訳(メタデータ) (2024-01-17T07:54:49Z) - Advancing Brain Tumor Detection: A Thorough Investigation of CNNs,
Clustering, and SoftMax Classification in the Analysis of MRI Images [0.0]
脳腫瘍は、すべての年齢層で高い有病率と死亡率のため、世界的な健康上の大きな課題となる。
本研究は,MRI画像を用いた脳腫瘍検出における畳み込みニューラルネットワーク(CNN)の使用に関する包括的研究である。
このデータセットは、健康な個人と脳腫瘍患者のMRIスキャンで作成され、CNNアーキテクチャーに入力された。
論文 参考訳(メタデータ) (2023-10-26T18:27:20Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
脳腫瘍は、個人の寿命を減少させる深刻な健康上の合併症の1つである。
脳腫瘍のタイムリーな検出と予測は、脳腫瘍による死亡率の予防に役立つ。
ディープラーニングベースのアプローチは、自動化バイオメディカル画像探索ツールを開発するための有望なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-16T14:06:45Z) - Prediction of brain tumor recurrence location based on multi-modal
fusion and nonlinear correlation learning [55.789874096142285]
深層学習に基づく脳腫瘍再発位置予測ネットワークを提案する。
まず、パブリックデータセットBraTS 2021上で、マルチモーダル脳腫瘍セグメンテーションネットワークをトレーニングする。
次に、事前訓練されたエンコーダを、リッチなセマンティックな特徴を抽出するために、プライベートデータセットに転送する。
2つのデコーダは、現在の脳腫瘍を共同に分断し、将来の腫瘍再発位置を予測するために構築されている。
論文 参考訳(メタデータ) (2023-04-11T02:45:38Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - A Survey and Analysis on Automated Glioma Brain Tumor Segmentation and
Overall Patient Survival Prediction [1.41414531071294]
本論文は、グリオーマ脳腫瘍分節の自動化手法の進歩を調査することを目的としている。
また、ベンチマークに基づいて様々なモデルの客観的評価を行うことも不可欠である。
タスク1のディープニューラルネットワークモデルに対する手作り特徴を用いた脳腫瘍の領域分割の完全域について述べる。
論文 参考訳(メタデータ) (2021-01-26T07:22:52Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
そこで我々は,腫瘍周辺で最小の境界ボックスを見つけるために,軽量計算量で高速かつ自動化された手法を提案する。
この領域は、サブリージョン腫瘍セグメンテーションのトレーニングネットワークにおける前処理ステップとして使用できる。
提案手法は BraTS 2015 データセット上で評価され,得られた平均 DICE スコアは 0.73 である。
論文 参考訳(メタデータ) (2020-02-26T14:10:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。