論文の概要: Using Reinforcement Learning in the Algorithmic Trading Problem
- arxiv url: http://arxiv.org/abs/2002.11523v1
- Date: Wed, 26 Feb 2020 14:30:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-28 15:10:07.548117
- Title: Using Reinforcement Learning in the Algorithmic Trading Problem
- Title(参考訳): アルゴリズム取引問題における強化学習の利用
- Authors: Evgeny Ponomarev, Ivan Oseledets, Andrzej Cichocki
- Abstract要約: 株式市場での取引は、状態、行動、報酬からなるマルコフ特性を持つゲームに解釈される。
金融商品の定額取引システムを提案し,実験的に検証した。
- 参考スコア(独自算出の注目度): 18.21650781888097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of reinforced learning methods has extended application to
many areas including algorithmic trading. In this paper trading on the stock
exchange is interpreted into a game with a Markov property consisting of
states, actions, and rewards. A system for trading the fixed volume of a
financial instrument is proposed and experimentally tested; this is based on
the asynchronous advantage actor-critic method with the use of several neural
network architectures. The application of recurrent layers in this approach is
investigated. The experiments were performed on real anonymized data. The best
architecture demonstrated a trading strategy for the RTS Index futures
(MOEX:RTSI) with a profitability of 66% per annum accounting for commission.
The project source code is available via the following link:
http://github.com/evgps/a3c_trading.
- Abstract(参考訳): 強化学習手法の開発はアルゴリズム取引を含む多くの分野に応用された。
本稿では、証券取引所における取引を、状態、行動、報酬からなるマルコフ特性を持つゲームとして解釈する。
複数のニューラルネットワークアーキテクチャを用いた非同期アドバンテージアクタ-クリティック手法に基づいて,金融機器の固定ボリュームを取引するシステムを提案し,実験的に検証した。
本手法における繰り返し層の適用について検討した。
実験は実際の匿名データを用いて行われた。
最良のアーキテクチャは、rts指数先物(moex:rtsi)の取引戦略を実証し、1アンナム当たりの利益率は66%であった。
プロジェクトのソースコードは以下のリンクから入手できる。
関連論文リスト
- A Deep Reinforcement Learning Framework For Financial Portfolio Management [3.186092314772714]
ディープラーニング技術によって解決されるポートフォリオ管理の問題である。
このフレームワークを実現するために、CNN(Convolutional Neural Network)、RNN(Basic Recurrent Neural Network)、Long Short-Term Memory(Long Short-Term Memory)という3つの異なるインスタンスが使用される。
我々は、優れたリターンを得られる原紙の複製に成功したが、株式市場に適用されると、うまく機能しない。
論文 参考訳(メタデータ) (2024-09-03T20:11:04Z) - AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks [0.0]
本研究では,HMM(Hidden Markov Models)とニューラルネットワークを組み合わせた新たなアプローチを提案する。
新型コロナウイルスの期間(2019-2022年)に、この二重モデルアプローチはシャープ比0.77で83%のリターンを達成した。
論文 参考訳(メタデータ) (2024-07-29T10:26:52Z) - When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments [55.19252983108372]
LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
論文 参考訳(メタデータ) (2024-07-15T06:49:30Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Neural Exploitation and Exploration of Contextual Bandits [51.25537742455235]
本研究では,ニューラルネットワークを用いたコンテキスト型マルチアームバンディットの活用と探索について検討する。
EE-Netは、ニューラルベースによる新たなエクスプロイトと探索戦略である。
EE-Netは、実世界のデータセット上での線形およびニューラルネットワークの帯域ベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-05-05T18:34:49Z) - Asynchronous Deep Double Duelling Q-Learning for Trading-Signal
Execution in Limit Order Book Markets [5.202524136984542]
我々は、エージェントを訓練し、高周波取引信号を個々のリミット注文を配置するトレーディング戦略に変換するために、深層強化学習を採用している。
ABIDESリミテッドオーダーブックシミュレータをベースとして,強化学習型オープンAIジム環境を構築した。
我々はRLエージェントが在庫管理の効果的な取引戦略を学習し、同じ信号にアクセス可能なベンチマークトレーディング戦略より優れていることを見出した。
論文 参考訳(メタデータ) (2023-01-20T17:19:18Z) - MCTG:Multi-frequency continuous-share trading algorithm with GARCH based
on deep reinforcement learning [5.1727003187913665]
そこで本研究では,garch (mctg) を用いたマルチ周波数連続共有トレーディングアルゴリズムを提案する。
強化学習アルゴリズムの連続的な動作空間を持つ後者は、株式取引の問題を解決するために使用される。
中国株式市場の異なる業界での実験では、基本的なDRL法やベンチモデルと比較して余分な利益が得られている。
論文 参考訳(メタデータ) (2021-05-08T08:00:56Z) - Evaluating data augmentation for financial time series classification [85.38479579398525]
2つの最先端ディープラーニングモデルを用いて,ストックデータセットに適用したいくつかの拡張手法を評価する。
比較的小さなデータセット拡張手法では、リスク調整された戻り値のパフォーマンスが最大400%向上する。
より大きなストックデータセット拡張メソッドでは、最大40%の改善が達成される。
論文 参考訳(メタデータ) (2020-10-28T17:53:57Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z) - ResNeSt: Split-Attention Networks [86.25490825631763]
このアーキテクチャは、異なるネットワークブランチにチャンネルワイズを応用し、機能間相互作用のキャプチャと多様な表現の学習の成功を活用する。
我々のモデルはResNeStと呼ばれ、画像分類の精度と遅延トレードオフにおいてEfficientNetより優れています。
論文 参考訳(メタデータ) (2020-04-19T20:40:31Z) - An Application of Deep Reinforcement Learning to Algorithmic Trading [4.523089386111081]
本稿では, 深部強化学習(DRL)に基づくアルゴリズム取引問題の解法を提案する。
幅広い株式市場でシャープ比のパフォーマンス指標を最大化するために、新しいDRLトレーディング戦略を提案する。
得られた強化学習 (RL) エージェントのトレーニングは, 限られた市場履歴データから人工軌道を生成することに基づいている。
論文 参考訳(メタデータ) (2020-04-07T14:57:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。